Skip to main content
Log in

Thermophysical Investigations of Ultrasonically Assisted Magnetic Nanofluids for Heat Transfer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The NiFe2O4 magnetic nanoparticles synthesized and used to prepare stable water-based magnetic nanofluids of various concentrations by ultrasonically assisted two-step techniques. Thermophysical investigations are made on the nanofluids at different temperatures ranging from 20 to 80 °C. The measurements revealed that the thermal conductivity of nanofluids significantly enhances with an increase in the percentage of nanoparticle volume fraction. The thermal conductivity measurements showed that the maximum enhancement is 32.65% achieved at 1% nanoparticle volume fraction and at 80 °C. Specific heat of nanofluids was decreased with increasing nanoparticle volume fractions, and it augments with increasing temperature. Viscosity measurements showed that nanofluid had a Newtonian behavior at all nanoparticle volume fractions and temperatures considered. The viscosity of the nanofluid increased with increasing nanoparticle concentration and decreasing temperature. Experimental results revealed that the viscosity sensitivity to temperature variation is minor, while it is more sensitive to the variations of nanoparticle volume fraction. The density of nanofluids was increased with increasing nanoparticle volume fractions and decreased with increasing temperature. Lastly, efforts were made to provide a precise correlation to estimate the thermal conductivity, as well as other thermophysical properties at various temperatures and volume fractions of nanoparticles. The comparison between the results and the correlation results showed a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Farret, F.A., Simões, M.G: Integration of Renewable Sources of Energy. Wiley, New York (2017)

    Google Scholar 

  2. Sidik, N.A.C., Jamil, M.M., Japar, W.M.A.A., Adamu, I.M.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 80, 1112–1122 (2017)

    Article  Google Scholar 

  3. Ganvir, R., Walke, P., Kriplani, V.: Heat transfer characteristics in nanofluid—a review. Renew. Sustain. Energy Rev. 75, 451–460 (2017)

    Article  Google Scholar 

  4. Kakavandi, A., Akbari, M.: Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int. J. Heat Mass Transf. 124, 742–751 (2018)

    Article  Google Scholar 

  5. Wadekar, V.V.: Ionic liquids as heat transfer fluids–an assessment using industrial exchanger geometries. Appl. Therm. Eng. 111, 1581–1587 (2017)

    Article  Google Scholar 

  6. Das, S.K., Choi, S.U., Yu, W., Pradeep, T.: Nanofluids: Science and Technology. Wiley, New York (2007)

    Book  Google Scholar 

  7. Sundar, L.S., Sharma, K., Singh, M.K., Sousa, A.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew. Sustain. Energy Rev. 68, 185–198 (2017)

    Article  Google Scholar 

  8. Gupta, M., Singh, V., Kumar, S., Kumar, S., Dilbaghi, N., Said, Z.: Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J. Clean. Prod. 190, 169–192 (2018)

    Article  Google Scholar 

  9. Amani, M., Amani, P., Kasaeian, A., Mahian, O., Pop, I., Wongwises, S.: Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci. Rep. 7, 17369 (2017)

    Article  ADS  Google Scholar 

  10. Chavan, A.R., Chilwar, R.R., Kharat, P.B., Jadhav, K.: Effect of annealing temperature on structural, morphological, optical and magnetic properties of NiFe2O4 thin films. J. Supercond. Nov. Magn. 1–10. https://doi.org/10.1007/s10948-018-4565-3 (2018)

  11. Sanna Angotzi, M., Musinu, A., Mameli, V., Ardu, A., Cara, C., Niznansky, D., Xin, H.L., Cannas, C.: Spinel ferrite core–shell nanostructures by a versatile solvothermal seed-mediated growth approach and study of their nanointerfaces. ACS Nan 11, 7889–7900 (2017)

    Article  Google Scholar 

  12. Wei, C., Feng, Z., Baisariyev, M., Yu, L., Zeng, L., Wu, T., Zhao, H., Huang, Y., Bedzyk, M.J., Sritharan, T.: Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X = Mn, Co, Ni, Fe). Chem. Mater. 28, 4129–4133 (2016)

    Article  Google Scholar 

  13. Shisode, M., Kharat, P.B., Bhoyar, D.N., Vinayak, V., Babrekar, M., Jadhav, K.: Structural and multiferroic properties of Ba2 + doped BiFeO3 nanoparticles synthesized via sol-gel method. In: AIP Conference Proceedings, p 030276. AIP Publishing (2018)

  14. Humbe, A.V., Kharat, P.B., Nawle, A.C., Jadhav, K.: Nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 with 0 ≤ x ≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations. J. Mater. Sci. Mater. Electron. 29, 3467–3481 (2018)

    Article  Google Scholar 

  15. Kale, G., Humbe, A.V., Kharat, P., Bhoyar, D., Jadhav, K.: Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nanoparticles. Bionano Frontier 8, 146–148 (2015)

    Google Scholar 

  16. Ghadikolaei, S., Yassari, M., Sadeghi, H., Hosseinzadeh, K., Ganji, D.: Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017)

    Article  Google Scholar 

  17. Malvandi, A., Moshizi, S., Ganji, D.: Nanoparticle transport effect on magnetohydrodynamic mixed convection of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties. Phys. E: Low-Dimens. Syst. Nanostruct. 88, 35–49 (2017)

    Article  ADS  Google Scholar 

  18. Gupta, M., Singh, V., Kumar, R., Said, Z.: A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. 74, 638–670 (2017)

    Article  Google Scholar 

  19. Afrand, M.: Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng. 110, 1111–1119 (2017)

    Article  Google Scholar 

  20. Ganesan, V., Louis, C., Damodaran, S.P.: Novel nanofluids based on magnetite nanoclusters and investigation on their cluster size-dependent thermal conductivity. J. Phys. Chem. C 122, 6918–6929 (2018)

    Article  Google Scholar 

  21. Hajmohammadi, M.: Cylindrical Couette flow and heat transfer properties of nanofluids; single-phase and two-phase analyses. J. Mol. Liq. 240, 45–55 (2017)

    Article  Google Scholar 

  22. Karimi, A., Afghahi, S.S.S., Shariatmadar, H., Ashjaee, M.: Experimental investigation on thermal conductivity of MFe2O4 (M = Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim. Acta 598, 59–67 (2014)

    Article  Google Scholar 

  23. Karimi, A., Sadatlu, M.A.A., Saberi, B., Shariatmadar, H., Ashjaee, M.: Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Adv. Powder Technol. 26, 1529–1536 (2015)

    Article  Google Scholar 

  24. Amani, M., Amani, P., Kasaeian, A., Mahian, O., Wongwises, S.: Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J. Mol. Liq. 230, 121–128 (2017)

    Article  Google Scholar 

  25. Shahsavar, A., Salimpour, M.R., Saghafian, M., Shafii, M.: Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J. Mech. Sci. Technol. 30, 809–815 (2016)

    Article  Google Scholar 

  26. Kharat, P.B., Kounsalye, J.S., Shisode, M.V., Jadhav, K.: Preparation and thermophysical investigations of CoFe2O4-based nanofluid: a potential heat transfer agent. J. Supercond. Nov. Magn. 1–11. https://doi.org/10.1007/s10948-018-4711-y(2018)

  27. Kharat, P.B., Somvanshi, S.B., Kounsalye, J.S., Deshmukh, S.S., Khirade, P.P., Jadhav, K.: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. In: AIP Conference Proceedings, p 050044. AIP Publishing (2018)

  28. Din, I.U., Tasleem, S., Naeem, A., Shaharun, M.S., Nasir, Q.: Study of annealing conditions on particle size of nickel ferrite nanoparticles synthesized by wet chemical route. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 46, 405–408 (2016)

    Article  Google Scholar 

  29. Dolla, T.H., Pruessner, K., Billing, D.G., Sheppard, C., Prinsloo, A., Carleschi, E., Doyle, B., Ndungu, P.: Sol-gel synthesis of MnxNi1−xCo2O4 spinel phase materials: structural, electronic, and magnetic properties. J. Alloys Compd. 742, 78–89 (2018)

    Article  Google Scholar 

  30. Kharat, P.B., JSK, A.V.H., Birajdar, S.D., Jadhav, K.: Preparation and diverse properties of cobalt ferrite ferrofluid. Int. J. Adv. Res. Basic Appl. Sci. (2), 106–109 (2017)

  31. Kounsalye, J.S., Kharat, P.B., Chavan, A.R., Humbe, A.V., Borade, R., Jadhav, K.: Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. In: AIP Conference Proceedings, p 050067. AIP Publishing (2018)

  32. Kounsalye, J.S., Kharat, P.B., Bhoyar, D.N., Jadhav, K.: Radiation-induced modifications in structural, electrical and dielectric properties of Ti4 + ions substituted Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci. Mater. Electron. 29, 8601–8609 (2018)

    Article  Google Scholar 

  33. Wang, Y., Li, L., Zhang, Y., Chen, X., Fang, S., Li, G.: Growth kinetics, cation occupancy, and magnetic properties of multimetal oxide nanoparticles: a case study on spinel NiFe2O4. J. Phys. Chem. C 121, 19467–19477 (2017)

    Article  Google Scholar 

  34. Yadav, R.S., Kuřitka, I., Vilcakova, J., Havlica, J., Masilko, J., Kalina, L., Tkacz, J., Enev, V., Hajdúchová, M.: Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150–161 (2017)

    Article  ADS  Google Scholar 

  35. Reddy, M.P., Shakoor, R., Mohamed, A.: Auto combustion synthesis, microstructural and magnetic characteristics of nickel ferrite nanoparticles. Indian J. Sci. Technol. 10(13). https://doi.org/10.17485/ijst/2017/v10i13/88034 (2017)

  36. Aghazadeh, M., Karimzadeh, I., Ganjali, M.R.: Ethylenediaminetetraacetic acid capped superparamagnetic iron oxide (Fe3O4) nanoparticles: a novel preparation method and characterization. J. Magn. Magn. Mater. 439, 312–319 (2017)

    Article  ADS  Google Scholar 

  37. Manikandan, V., Li, X., Mane, R., Chandrasekaran, J.: Room temperature gas sensing properties of Sn-substituted nickel ferrite (NiFe2O4) thin film sensors prepared by chemical co-precipitation method. J. Electron. Mater. 1–6 (2018)

  38. Ramirez, S., Chan, K., Hernandez, R., Recinos, E., Hernandez, E., Salgado, R., Khitun, A., Garay, J., Balandin, A.: Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene-graphite fillers. Mater. Des. 118, 75–80 (2017)

    Article  Google Scholar 

  39. Corner, W., Tanner, B.: Magnetic domains. Phys. Educ. 11, 356 (1976)

    Article  ADS  Google Scholar 

  40. Hubert, A., Schäfer, R.: Magnetic domains: the analysis of magnetic microstructures. Springer Science & Business Media (2008)

  41. Gromova, Y.A., Maslov, V.G., Baranov, M.A., Serrano-García, R., Kuznetsova, V.A., Purcell-Milton, F., Gun’ko, Y.K., Baranov, A.V., Fedorov, A.V.: Magnetic and optical properties of isolated and aggregated CoFe2O4 superparamagnetic nanoparticles studied by MCD spectroscopy. J. Phys. Chem. C 122, 11491–11497 (2018)

    Article  Google Scholar 

  42. Carey, V.P.: Liquid Vapor Phase Change Phenomena: an Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  43. Yadav, R.: Synthesis and characterization of structural and magnetic properties of electrodeposited cobalt iron thin film. Indian Institute of Technology Hyderabad (2015)

  44. Asadi, A., Asadi, M., Rezaniakolaei, A., Rosendahl, L.A., Afrand, M., Wongwises, S.: Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int. J. Heat Mass Transf. 117, 474–486 (2018)

    Article  Google Scholar 

  45. De Sciarra, F.M., Russo, P.: Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composites. William Andrew, New York (2018)

  46. Cao, G.: Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press, London (2004)

    Book  Google Scholar 

  47. Priyananda, P., Sabouri, H., Jain, N., Hawkett, B.S.: Steric stabilization of γ-Fe2O3 superparamagnetic nanoparticles in a hydrophobic ionic liquid and the magnetorheological behavior of the ferrofluid. Langmuir 34, 3068–3075 (2018)

    Article  Google Scholar 

  48. Ma, B., Banerjee, D.: A review of nanofluid synthesis. In: Advances in Nanomaterials, pp 135–176. Springer, Berlin (2018)

  49. Kharat, P.B., Shisode, M., Birajdar, S., Bhoyar, D., Jadhav, K.: Synthesis and characterization of water based NiFe2O4 ferrofluid. In: AIP Conference Proceedings, p 050122. AIP Publishing (2017)

  50. Li, C., Strachan, A.: Cohesive energy density and solubility parameter evolution during the curing of thermoset. Polymer 135, 162–170 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Professor John Philip, Indira Gandhi Center for Atomic Research Center, Kalpakkam, Tamilnadu, as well as Professor J. B. Naik, Head, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, Maharashtra, and Tata Institute of Fundamental Research, Mumbai for providing thermal conductivity and specific heat, and VSM measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant B. Kharat or K. M. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharat, P.B., Humbe, A.V., Kounsalye, J.S. et al. Thermophysical Investigations of Ultrasonically Assisted Magnetic Nanofluids for Heat Transfer. J Supercond Nov Magn 32, 1307–1317 (2019). https://doi.org/10.1007/s10948-018-4819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4819-0

Keywords

Navigation