Skip to main content

Advertisement

Log in

Microstructural, Magnetic, and Nanoindentation Studies of the Ball-Milled Ti80Ni20 Alloy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanostructured Ti80Ni20 material was elaborated by mechanical alloying from pure Ti and Ni powders in a planetary ball-mill P7 under argon atmosphere at ambient temperature. Morphological, microstructural, magnetic, and nanoindentation properties were studied using scanning electron microscopy, X-ray diffraction, magnetic measurements, and nanoindentation test. The morphological observations show the predominance of the welding phenomenon during the milling process. The Rietveld refinement of the X-ray diffraction pattern reveals, after 4 h of milling, the formation of the disordered hcp-Ti (Ni) solid solution in addition to elemental hcp-Ti and fcc-Ni. On further milling (20 h), the interdiffusion between Ti and Ni atoms is evidenced by the formation of disordered hcp-Ti (Ni) and fcc-Ni (Ti) solid solutions. The saturation magnetization and coercivity values are about of 159.8 emu/g and 80.79 Oe, respectively, after 20 h of milling. Mr/Ms ratio indicates the existence of small magnetic particles which are typically single domains (Mr/Ms 0.1–0.5) and/or multidomain (Mr/Ms < 0.1). Nanohardness values of the sintered powders fluctuates between 1.53 and 5.98 GPa while those of the elastic modulus varies in the range 130.73 to 164.53 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang, X., Zhang, Y.: Recent advances in research and development of porous NiTi shape memory alloys. Chin. J. Mater. Res. 21(6), 561–569 (2007)

    Article  ADS  Google Scholar 

  2. Geng, F., Shi, P., Yang, D.Z.: Review on the development of NiTi shape memoryalloy as a biomaterial. J. Funct. Mater. 36(1), 11–14 (2005)

    Google Scholar 

  3. Zhao, X., Ma, L., Yao, Y., Ding, Y., Shen, X.: Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries. Energy Environ. Sci. 3(9), 1316–1321 (2010)

    Article  Google Scholar 

  4. Slotoff, N., Liu, C., Deevi, S.: Emerging applications of intermetallics. Intermetallics. 8, 1313–1320 (2000)

    Article  Google Scholar 

  5. K. Ebato, M. Tsuda, T. Oomori, Method of producing Ni–Ti intermetallic compounds, US Patent 5316599, 1994

    Google Scholar 

  6. Takasaki, A.: Mechanical alloying of the Ti-Ni system. Phys. Status Solidi. 169, 83–191 (1998)

    Article  Google Scholar 

  7. Mousavi, T., Karimzadeh, F., Abbasi, M.H.: Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater. Sci. Eng. 487, 46–51 (2008)

    Article  Google Scholar 

  8. Terunuma, Y., Nagumo, M.: Structural relaxation in amorphous Ni50Ti50 alloy prepared by mechanical alloying. Mater. Trans. e JIM. 7, 842–847 (1995)

    Article  Google Scholar 

  9. Makifuchi, Y., Terunuma, Y., Nagumo, M.: Structural relaxation in amorphous Ni-Ti alloys prepared by mechanical alloying. Mater. Sci. Eng. 228, 312–316 (1997)

    Article  Google Scholar 

  10. Martins, C.B., Fernandes, B.B., Ramos, E.C.T., Silva, G., Ramos, A.S.: Syntheses of the Ni3Ti, NiTi and NiTi2 compounds by mechanical alloying. Mater. Sci. Forum. 531, 217–222 (2006)

    Article  Google Scholar 

  11. Jiang, X., Liu, Q., Zhang, L.: Electrochemical hydrogen storage property of NiTi alloys with different Ti content prepared by mechanical alloying. Rare Metals. 30, 63–67 (2011)

    Article  Google Scholar 

  12. L. Lutterotti, MAUD CPD Newletter, IUCR 24, 2000

  13. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crys. 2, 45–48 (1969)

    Article  Google Scholar 

  14. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 7, 671–675 (2012)

    Article  Google Scholar 

  15. Chudoba, T., Schwaller, R., Rabe, J.M., Breguet, J.M.: Comparison of nanoindentation results obtained with Berkovich and Cube Corner indenters. Philos. Mag. 86, 5265–5283 (1986)

    Article  ADS  Google Scholar 

  16. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1966)

    MATH  Google Scholar 

  17. Nakajima, H., Koiwa, M.: Diffusion in titanium. 1ISIJ International. 31(1 991), 757–766

    Article  Google Scholar 

  18. Radev, D.D.: Mechanical synthesis of nanostructured titanium–nickel alloys. Adv. Powder Technol. 21, 477–482 (2010)

    Article  Google Scholar 

  19. Sakher, E., Loudjani, N., Benchiheub, M., Bououdina, M.: Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis. Hindawi J. Nanomater. 2018, 1 (2018)

    Article  Google Scholar 

  20. Karolus, M., Panek, J.: Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment. J. Alloys. Compds. 658, 709–715 (2016)

    Article  Google Scholar 

  21. Laves, F., Wallbaum, H.J.: Naturwissenschaften. 27–674 (1939)

  22. Koskimaki, D., Marcinkowski, M.J., Sastri, A.S.: Trans. AIME. 245–1883 (1969)

  23. Poole, D.M.: Hume-Rothery. J. Inst. Met. 55, 83–473 (1954)

    Google Scholar 

  24. Koch, C.C., Pathak, D., Yamada, K.: Mechanical alloying for structural applications, pp. 12–205. Mater, Park (1993)

    Google Scholar 

  25. Chen, C.W.: Amsterdam. North-Holland (1977)

  26. Loudjani, N., Bensebaa, N., Dekhil, L., Alleg, S., Suñol, J.J.: Structural and magnetic properties of Co50Ni50 powder mixtures. J. Magn. Magn. Mater. 323, 3063–3070 (2011)

    Article  ADS  Google Scholar 

  27. Bensebaa, N., Loudjani, N., Alleg, S., Dekhil, L., Suñol, J.J., Al Sae, M., Bououdina, M.: XRD analysis and magnetic properties of nanocrystalline Ni20Co80 alloys. J. Magn. Magn. Mater. 349, 51–56 (2014)

    Article  ADS  Google Scholar 

  28. Souilah, S., Alleg, S., Bououdina, M., Sunol, J.J., Hlil, E.K.: Magnetic and structural properties of the nanostructured Cu50Ni50 powders. J. Supercond. Nov. Magn. 30, 1927 (2017)

    Article  Google Scholar 

  29. de Julian Fernandeza, C., Sangregorio, C., Innocenti, C., Mattei, G., Mazzoldi, P.: Inorg. Chim. Acta. 361, 4138–4142 (2008)

    Article  Google Scholar 

  30. Zhao, H., Sheng, H.W., Lu, K.: Microstructure evolution and thermal properties in nanocrystalline Fe during machanical attrition. Acta Mater. 49, 365–375 (2001)

    Article  Google Scholar 

  31. R. Kocich, I. Szurman, M. Kursa: The Methods of Preparation of Ti-Ni-X Alloys and Their Forming, Intech Open, Chapter 2, 2013

  32. Ghadadimi, M., Shokuhfar, A., Rostami, H.R., Ghaffari, M.: Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders. Mater. Lett. 80, 181–183 (2012)

    Article  Google Scholar 

  33. Oliver, W.C., Pharr, G.M.: J. Mater. Research. 7, 1564–1583 (1992)

    Article  ADS  Google Scholar 

  34. Qian, L., Li, M., Zhou, Z., Yang, H., Shi, X.: Surf. Coat. Technol. 195, 264–271 (2005)

    Article  Google Scholar 

  35. Fu, Y., Du, H., Zhang, S.: Deposition of TiN layer on TiNi thin films to improve surface properties. Surf. Coat. Technol. 167, 129–136 (2003)

    Article  Google Scholar 

  36. Pogrebnjak, A., Bratushka, S., Levintant-Zayonts, N., Malikov, L.: Influence of high-dose ion implantation of NiTi equiatomic on shape memory and pseudoelastic. J. Nano Electronic Phys. 5, 61–72 (2013)

    Google Scholar 

  37. Mante, F.K., Baran, G.R., Lucas, B.: Biomaterials. 20, 1051–1055 (1999)

    Article  Google Scholar 

  38. Britton, T.B., Liang, H., Dunne, F.P.E., Wilkinson, A.J.: Proceedings of the Royal Society, vol. 466, pp. 695–719 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Zerniz Nawel from the Laboratoire de Chimie organique, Département de Chimie, Faculté des Sciences, Université Badji-Mokhtar, Annaba, Algérie, for the elaboration of the nanostructured powders; to A.M. Mercier from the Laboratoire des Fluorures, Université du Maine, Le Mans, France, for the XRD measurements; to Beldi Mounira for sintering; and to Boulakraa Mohamed from the Unité de recherches des matériaux avancés, Annaba, Algérie, for the cold compaction.

Funding

This research work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algérie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dekhil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekhil, L., Louidi, S., Bououdina, M. et al. Microstructural, Magnetic, and Nanoindentation Studies of the Ball-Milled Ti80Ni20 Alloy. J Supercond Nov Magn 32, 3623–3636 (2019). https://doi.org/10.1007/s10948-019-05145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05145-1

Keywords

Navigation