Skip to main content
Log in

Electronic and Magnetic Structure and Elastic and Thermal Properties of Mn2-Based Full Heusler Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetism, electronic structure, elastic and thermal properties of Mn2YAl (with Y = Cr, V) have been investigated. The optimized lattice parameters, bulk modulus, and cohesive energy have been obtained. These alloys have the ferrimagnetic state as the most stable magnetic configuration, since the calculations showed a strong Mn-V antiferromagnetic coupling leading to the ferromagnetism of the Mn sublattices. A small and itinerant magnetic moment of Mn at the A site is found, which is antiparallel to the moment of Y at the B position in Mn2YAl (with Y = Cr, V) compounds. The calculated total spin moments are integral values and increase from − 2 μB/f.u. for Mn2VAl to – 1 μB/f.u. for Mn2CrAl with increasing the number of valence electrons. Band structure and total and partial density of states could be calculated via applying the modified Becke Johnson approximation (mBJ). Based on these results, Mn2YAl (with Y = Cr, V) are half-metallic ferrimagnets with the energy gap lies in the majority spin direction and a high-spin polarization (100%). The main difference between these two compounds is that the band gap is increased by 48% (0.210 eV for Mn2CrAl and 0.401 eV Mn2VAl). Elastic anisotropies, brittleness, and thermodynamic properties are determined for the Mn2YAl (with Y = Cr, V). The slight difference in the spatial distributions of Young’s moduli of Mn2YAl (with Y = Cr, V) reflects the small differences for the elastic anisotropies of the alloys under consideration. The mechanical stability of Mn2YAl (with Y = Cr, V) alloys are studied based on the elastic constants. The thermal properties are studied and investigated using the quasi-harmonic model, in addition, the temperature effect on heat capacities at constant pressure and volume, entropy, and thermal expansion are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54(3), 225–226 (1975)

    Article  ADS  Google Scholar 

  2. Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D.: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B. 43(1), 1297–1300 (1991)

    Article  ADS  Google Scholar 

  3. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science. 281(5379), 951 (1998)

    Article  ADS  Google Scholar 

  4. Heusler F.:Über magnetische Manganlegierungen. sl: Verhandlungen der Deutschen Physikalischen Gesellschaft, 5, p. 219 (1903)

  5. de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50(25), 2024–2027 (1983)

    Article  ADS  Google Scholar 

  6. Ishida, S., Masaki, T., Fujii, S., Asano, S.: Theoretical search for half-metalliic films of Co2MnZ (Z = Si, Ge). Phys. B Condens. Matter. 245(1), 1–8 (1998)

    Article  ADS  Google Scholar 

  7. Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323–410 (2004)

    Article  ADS  Google Scholar 

  8. Schmidt, G., Molenkamp, L.W.: Spin injection into semiconductors, physics and experiments. Semicond. Sci. Technol. 17(4), 310 (2002)

    Article  ADS  Google Scholar 

  9. Prinz, G.A.: Magnetoelectronics. Science. 282(5394), 1660 (1998)

    Article  Google Scholar 

  10. W.P.J.a.Z.K.R. A.: Alloys and Compounds of d-Elements with Main Group Elements. Part 2 (Landolt B¨ ornstein New Series, Group III, Vol. 19, Pt.c) ed (Berlin: Springer) pp. 75–184, (1988)

  11. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science. 294(5546), 1488 (2001)

    Article  ADS  Google Scholar 

  12. Yoshida, Y., Kawakami, M., Nakamichi, T.: Magnetic properties of a ternary alloy Mn0.5V0.5-yAly. J. Phys. Soc. Jpn. 50(7), 2203–2208 (1981)

    Article  ADS  Google Scholar 

  13. Itoh, H., Nakamichi, T., Ocirc, Yamaguchi, Y., Kazama, N.: Neutron diffraction study of Heusler type alloy Mn0.47V0.28Al0.25. Trans. Jpn. Inst. Metals. 24(5), 265–271 (1983)

    Article  Google Scholar 

  14. Weht, R., Pickett, W.E.: Half-metallic ferrimagnetism in Mn2VAl. Phys. Rev. B. 60(18), 13006–13010 (1999)

    Article  ADS  Google Scholar 

  15. Wollmann, L., Chadov, S., Kübler, J., Felser, C.: Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B. 90(21), 214420 (2014)

    Article  ADS  Google Scholar 

  16. Şaşioglu, E., Sandratskii, L.M., Bruno, P.: First-principles study of exchange interactions and curie temperatures of half-metallic ferrimagnetic full Heusler alloys Mn 2 V Z (Z = Al, Ge). J. Phys. Condens. Matter. 17(6), 995 (2005)

    Article  Google Scholar 

  17. Ishida, S., Asano, S., Ishida, J.: Bandstructures and hyperfine fields of Heusler alloys. J. Phys. Soc. Jpn. 53(8), 2718–2725 (1984)

    Article  ADS  Google Scholar 

  18. Khmelevskyi, S., Shick, A.B., Mohn, P.: Element-specific analysis of the magnetic anisotropy in Mn-based antiferromagnetic alloys from first principles. Phys. Rev. B. 83, 224419 (2011)

    Article  ADS  Google Scholar 

  19. Hongzhi, L., Zhiyong, Z., Li, M., Shifeng, X., Xiaoxi, Z., Chengbao, J., Huibin, X., Guangheng, W.: Effect of site preference of 3d atoms on the electronic structure and half-metallicity of Heusler alloy Mn2YAl. J. Phys. D. Appl. Phys. 41(5), 055010 (2008)

    Article  Google Scholar 

  20. Jiang, C., Venkatesan, M., Coey, J.M.D.: Transport and magnetic properties of Mn2VAl: search for half-metallicity. Solid State Commun. 118(10), 513–516 (2001)

    Article  ADS  Google Scholar 

  21. Blaha, K.S.P., Madsen, G.K.H., Kvasnicka, D., Luitz, J., WIEN2K: An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universitat, Wien (2011)

    Google Scholar 

  22. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  23. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  24. Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124(22), 221101 (2006)

    Article  ADS  Google Scholar 

  25. Otero-de-la-Roza, A., Abbasi-Pérez, D., Luaña, V.: Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182(10), 2232–2248 (2011)

    Article  ADS  Google Scholar 

  26. Otero-de-la-Roza, A., Luaña, V.: Gibbs2: a new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 182(8), 1708–1720 (2011)

    Article  ADS  Google Scholar 

  27. Berarma, K., Charifi, Z., Soyalp, F., Baaziz, H., Uğur, G.: U. Ş, Investigation of electronic structure and thermodynamic properties of quaternary Li-containing chalcogenide diamond-like semiconductors. Semicond. Sci. Technol. 31(12), 125015 (2016)

    Article  ADS  Google Scholar 

  28. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  29. Skaftouros, S., Özdoğan, K., Şaşıoğlu, E., Galanakis, I.: Generalized Slater-Pauling rule for the inverse Heusler compounds. Phys. Rev. B. 87(2), 024420 (2013)

    Article  ADS  Google Scholar 

  30. Haraguchi, K., Fujii, S., Ishida, S., Asano, S.: Electronic structure of Cr–Mn–V–Z system based on Heusler Mn2VZ (Z = Al, Ga). J. Phys. Soc. Jpn. 81(7), 074710 (2012)

    Article  ADS  Google Scholar 

  31. Galanakis, I., Dederichs, P. H.: Slater-Pauling Behavior and Origin of the Half-Metallicity of the Full-Heusler Alloys, pp. 1–9, (2002)

  32. Sabine, W., Hem, C.K., Gerhard, H.F., Claudia, F.: Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J. Phys. Condens. Matter. 18(27), 6171 (2006)

    Article  Google Scholar 

  33. Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54(11), 899–904 (1938)

    Article  ADS  Google Scholar 

  34. Slater, J.C.: The ferromagnetism of nickel. II. Temperature effects. Phys. Rev. 49(12), 931–937 (1936)

    Article  ADS  Google Scholar 

  35. Luo, H., Zhu, Z., Liua, G., Xu, S., Wu, G., Liu, H., Qu, J., Li, Y.: Prediction of half-metallic properties for the Heusler alloys Mn2CrZ(Z = Al, Ga, Si, Ge, Sb): a first-principles study. J. Magn. Magn. Mater. 320, 421–428 (2008)

    Article  ADS  Google Scholar 

  36. Santao Qi, C.-H.Z., Chen, B., Shen, J.: First-principles study on the band structure, magnetic and elastic properties of half-metallic Mn2CrAl. Mod. Phys. Lett. B. 29, 1550139 (2015)

    Google Scholar 

  37. Born, K., Huang, M.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1956)

    MATH  Google Scholar 

  38. Jamal, M., Jalali Asadabadi, S., Ahmad, I., Rahnamaye Aliabad, H.A.: Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)

    Article  Google Scholar 

  39. Nye, J.F.: Properties of Crystals. Oxford Univ. Press, NewYork (1985)

    Google Scholar 

  40. Debye, P.: Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann. Phys. 386(25), 1154–1160 (1926)

    Article  ADS  Google Scholar 

  41. Dulong, P.L., Petit A.T.: Recherches Sur Quelques Points Importans de La Theorie de La Chaleur Ann. Chim. Phys. 10–395 (1819).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Baaziz or Z. Charifi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jum’h, I., Sâad essaoud, S., Baaziz, H. et al. Electronic and Magnetic Structure and Elastic and Thermal Properties of Mn2-Based Full Heusler Alloys. J Supercond Nov Magn 32, 3915–3926 (2019). https://doi.org/10.1007/s10948-019-5095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5095-3

Keywords

PACS

Navigation