Skip to main content
Log in

Volumetric Properties of Amino Acids and Hen-Egg White Lysozyme in Aqueous Triton X-100 at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent molar volumes, Vφ,2, of glycine, alanine, α-amino-n-butyric acid, valine, leucine, and lysine monohydrochloride have been determined in aqueous solutions of 0.05, 0.1, and 0.4 mol-kg−1 Triton X-100 (TX-100), and the partial specific volume, v0, of hen-egg-white lysozyme in 0.4 mol-kg−1 TX-100 by density measurements at 298.15 K. These data have been used to calculate the infinite dilution apparent molar volumes, V2,m0, for the amino acids in aqueous TX-100 solutions and the standard partial molar volumes of transfer, Δtr V2,m0, of the amino acids from water to the aqueous surfactant solutions. The linear correlation of V2,m0 for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO), CH2 group and other alkyl chains of the amino acids to V2,m0. The results on Δ tr V2,m0, of amino acids from water to aqueous TX-100 solutions have been interpreted in terms of ion–ion, ion–polar, hydrophilic–hydrophilic and hydrophobic–hydrophobic group interactions. For all the six amino acids studied, the values of Δtr V2,m0 from water to all the studied concentrations of aqueous TX-100 are small in spite of their different hydrophobic content, indicating an overall balance in interactions of zwitterionic/hydrophilic groups of amino acids with the hydrophilic groups of TX-100, and of hydrophobic and ionic/hydrophilic groups of the amino acids with hydrophobic groups of TX-100. Comparison of the interactions of the amino acids with nonionic, anionic and cationic surfactants has also been made and discussed. The partial specific volume of transfer of lysozyme from water to aqueous TX-100 solutions also indicates a balance of the hydrophobic and hydrophilic interactions in the protein–nonionic surfactant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lynne, P. Collins, and M. R. J. Salton, (1979)Biochim. Biophys. Acta 553, 40 .

    Google Scholar 

  2. T. L. Reddy and M. M. Weber, (1986)J. Bacteriol. 167, 1 .

    Google Scholar 

  3. T. G. Warner, L. M. Dambach, J. H. Shin, and J. S. O’Brien, (1981)J. Biol. Chem. 256, 2952.

    Google Scholar 

  4. O. J. Bjerrum, S. Bhakdi, and K. Rieneck, (1980)J. Biochem. Biophys. Methods 3, 355 .

    Article  Google Scholar 

  5. T. Saitoh, N. Hattori, and M. Hiraide, (2004)J. Chromatogr. A 1028, 149 .

    Article  Google Scholar 

  6. Z. Wang, F. Zhao, X. Hao, D. Chen, and D. Li, (2004)J. Mol. Catal. B 27, 147.

    Article  Google Scholar 

  7. T. Cserhati, E. Forgacs, Z. Deyl, I. Miksik, and A. Echardt, (2001)J. Chromatogr. A 910, 137 .

    Article  Google Scholar 

  8. B. Wang and H. Liu, (1999)Acta Biophys. Sin. 15, 456 .

    Google Scholar 

  9. Z. Bi and A. W. Neumann, (1998)Acta Phys. Chem. Sin. 14, 649 .

    Google Scholar 

  10. Y. Zhang, P. Chen, and H. Zhou, (1994)Acta Biophys. Sin. 10, 181 .

    Google Scholar 

  11. L. Huizhou, Y. Weijing, and C. Jiayong, (1996)Biochem. Eng. J. 2, 187.

    Article  Google Scholar 

  12. Y. Moriyama and K. Takeda, (1999)Langmuir 15, 2003.

    Article  Google Scholar 

  13. K. Takeda and Y. Moriyama, (1997)Curr. Topics Colloids Interface 1, 109.

    Google Scholar 

  14. E. L. Gelamo and M. Tabak, (2000)Spectrochim. Acta., Part A 56, 2255.

    Google Scholar 

  15. M. Vasilescu, D. Angelescu, M. Almgren, and A. Valstar, (1999)Langmuir 15, 2635 .

    Article  CAS  Google Scholar 

  16. D. Kelley and D. J. McClements, (2003)Food Hydrocolloids 17, 74.

    Google Scholar 

  17. S. Deep and J. C. Ahluwalia, (2001)Phys. Chem. Chem. Phys. 3, 4583.

    Article  Google Scholar 

  18. A. D. Nielsen, K. Borch, and P. Westh, (2000)Biochim. Biophys. Acta 1479, 321.

    Google Scholar 

  19. M. Yamasaki, T. Yamashita, H. Yano, K. Tatsumi, and K. Aoki, (1996)Int. J. Biol. Macromol. 19, 241.

    Article  Google Scholar 

  20. S. K. Singh, A. Kundu, and N. Kishore, (2004)J. Chem. Thermodyn. 36, 7.

    Article  Google Scholar 

  21. F. E. Jones, (1978)J. Res. Natl. Bur. Std. (U.S.) 83, 419.

    Google Scholar 

  22. D. G. Archer, (1992)J. Phys. Chem. Ref. Data 21, 793.

    Google Scholar 

  23. S. K. Singh and N. Kishore, (2003)J. Solution Chem. 32, 117.

    Article  Google Scholar 

  24. A. K. Mishra and J. C. Ahluwalia, (1984)J. Phys. Chem. 88, 86 .

    Google Scholar 

  25. J. E. Desnoyers, (1982)Pure Appl. Chem. 54, 1469 .

    Google Scholar 

  26. G. R. Hedwig, J. F. Reading, and T. H. Lilley, (1991)J. Chem. Soc. Faraday Trans. 87, 1751 .

    Article  Google Scholar 

  27. R. K. Wadi and R. K. Goyal, (1992)J. Solution Chem. 21, 163 .

    Article  Google Scholar 

  28. Z. Yau, J. Wang, H. Zheng, and D. Liu, (1998)J. Solution Chem. 27, 473 .

    Article  Google Scholar 

  29. J. Wang, Z. Yau, K. Zhuo, and J. Liu, (1999)Biophys. Chem. 80, 179 .

    Article  Google Scholar 

  30. A. W. Hakin, M. M. Duke, J. L.Marty, and K. E. Presuss, (1994)J. Chem. Soc. Faraday Trans. 90, 2027 .

    Article  Google Scholar 

  31. A. W. Hakin, M. M. Duke, L. L. Groft, J. L. Marty, and M. L. Rashfeldt, (1995)Can. J. Chem. 73, 725 .

    Google Scholar 

  32. F. J. Millero, A. L. Surdo, and C. Shin, (1978)J. Phys. Chem. 82, 784 .

    Google Scholar 

  33. E. Berlin and M. J. Pallansch, (1968)J. Phys. Chem. 72, 1887 .

    Google Scholar 

  34. F. Franks, M. A. Quickenden, D. S. Reid, and B. Watson, (1970)Trans Faraday Soc. 66, 582 .

    Article  Google Scholar 

  35. A. Bondi, (1964)J. Phys. Chem. 68, 441 .

    Google Scholar 

  36. A. Bondi, (1954)J. Phys. Chem. 58, 929 .

    Google Scholar 

  37. F. Shahidi, P. G. Farrell, and J. T. Edwards, (1976)J. Solution Chem. 5, 807 .

    Google Scholar 

  38. K. Hara, H. Kuwabara, O. Kajimoto, and K. Bhattachrayya, (1999)J. Photochem. Photobiol. 124, 159 .

    Article  Google Scholar 

  39. E. Haque, A. R. Das, and S. P. Moulick, (1995)J. Chem. Phys. Chem. 99, 14032 .

    Google Scholar 

  40. R. W. Gurney, Ionic Process in Solutions (McGraw Hill, New York, 1953).

    Google Scholar 

  41. H. S. Frank and M. W. Evan, (1945)J. Chem. Phys. 13, 507 .

    Article  Google Scholar 

  42. H. Z. Yuan, G. Z. Cheng, S. Zhao, X. J. Miao, J. Y. Yu, L. F. Shen, and Y. R. Du, (2000)Langmuir 16, 3030 .

    Article  Google Scholar 

  43. C. A. Bunton, H. J. Foroudian, N. D. Gillitt, and C. R. Whiddon, (1999)J. Colloid Interface Sci. 215, 64 .

    Article  Google Scholar 

  44. L. A. Bulavin, V. M. Garamus, T. V. Karmazina, and S. P. Shtanko, (1995)J. Colloid (Trans. Kolloidn. Zh.) 57, 856 .

    Google Scholar 

  45. V. L. Alekseev, G. A. Evmenenko, and A. T. Dembo, (1997)Colloid J. 59, 267 .

    Google Scholar 

  46. P. S. Goyal, S. V. G. Menon, B. A. Dasannacharya, and P. Thiyagarajan, (1995)Physica B 213–214, 610 .

  47. P. Sen, S. Mukherjee, A. Halder, and K. Bhattacharyya, (2004)Chem. Phys. Lett. 385, 361 .

    Article  Google Scholar 

  48. H.-J. Hinz, (ed.) Thermodynamic Data for Biochemistry and Biotechnology (Springer-Verlag Berlin Heidelberg, New York, Tokyo, 1986).

    Google Scholar 

  49. K. Sasahara, M. Sakurai, and K. Nitta, (1999)J. Mol. Biol. 291, 693 .

    Article  Google Scholar 

  50. W. Kauzmann, (1959)Adv. Protein Chem. 14, 1 .

    Google Scholar 

  51. T. V. Chalikian, V. S. Gindikin, and K. J. Breslauer, (1995)J. Mol Biol 250, 291 .

    Article  Google Scholar 

  52. F. M. Richards, (1977)Annu. Rev. Biophys. Bioeng. 6, 151 .

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nand Kishore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.K., Kishore, N. Volumetric Properties of Amino Acids and Hen-Egg White Lysozyme in Aqueous Triton X-100 at 298.15 K. J Solution Chem 33, 1411–1427 (2004). https://doi.org/10.1007/s10953-004-1056-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-004-1056-x

Navigation