Skip to main content
Log in

Thermodynamic Modeling of Aqueous Aluminum Chemistry and Solid-Liquid Equilibria to High Solution Concentration and Temperature. I. The Acidic H-Al-Na-K-Cl-H2O System from 0 to 100 °C

  • Special Issue Dedicated to Joseph Antoine Rard
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we describe the development of a thermodynamic model that calculates solute/solvent activities and solid-liquid equilibria in the acidic aluminum system, H-Al3+-Na-K-Cl-H2O, to high molality from 0 ° to ≈100 °C. The model incorporates the concentration-dependent, specific interaction equations for aqueous solutions of Pitzer (Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 75–153, CRC Press, Boca Raton, 1991). Parameterization of this model adds Al3+ specific interactions in the binary Al-Cl-H2O and ternary Al-H-Cl-H2O, Al-Na-Cl-H2O and Al-K-Cl-H2O systems as well as the standard chemical potentials of AlCl3⋅6H2O(s) and Al(OH)3(s) (gibbsite) in the 0 ° to 100 °C range to our variable temperature (0–250 °C) model of acid-base reactions in the H-Na-K-OH-Cl-HSO4-SO4-H2O system (Christov and Moller in Geochim. Cosmochim. Acta 68:1309, 2004). In constructing our aluminum model, we used Emf, osmotic, equilibrium constant and solubility data. New Emf measurements using the cell Pt|H2(g, 101.325 kPa)|HCl(m 1), AlCl3(m 2)|AgCl(s)|Ag|Pt at temperatures ranging from 0 to 45 °C and at total ionic strength ranging from 0.1 to 3 mol⋅kg−1 are presented. Gibbsite and boehmite, AlOOH(s), solubility data are used in testing the model. Limitations of the model due to data insufficiencies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, P.B.: In: Wedepohl, K.H. (ed.) Handbook of Geochemistry II-1, pp. 13-A-1–13-O-1. Springer, Berlin (1972)

    Google Scholar 

  2. Stefánsson, A., Arnórsson, S.: Feldspar saturation in natural waters. Geochim. Cosmochim. Acta 64, 2567–2584 (2000)

    Article  Google Scholar 

  3. Nordstrom, D.K.: The effect of sulfate on aluminum concentrations in natural waters: Some stability revelations in the system Al2O3-SO3-H2O at 298 K. Geochim. Cosmochim. Acta 46, 681 (1982)

    Article  CAS  Google Scholar 

  4. Stumm, W., Morgan, J.J.: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley Interscience, New York, p. 1022 (1996)

    Google Scholar 

  5. White, D.E., Hem, J.D., Waring, G.A.: Chemical composition of subsurface waters. In: Fleischer, M. (ed.) Data of Geochemistry, Geological Survey Professional Paper 440-F, Chapter F, pp. 1–67 (1963)

  6. Raymahashay, B.C.: A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park. Geochim. Cosmochim. Acta 32, 499–522 (1968)

    Article  CAS  Google Scholar 

  7. Gang, M.W., Langmuir, D.: Controls on heavy metal in surface and ground waters affected by coal mine drainage: Clarion River-Redbank Creek watershed, Pennsylvania. In: 5th Symp. Coal Mine Drainage Res. NCA/BCR, Louisville, Ky, pp. 39–69 (1974)

  8. Nordstrom, D.K., Jenne, E.A., Averett, R.C.: Redox equilibria of iron in acid mine waters. In: Jenne, E.A. (ed.) Chemical Modeling in Aqueous Systems; Speciation, Sorption, Solubility and Kinetics. Am. Chem. Soc. Symp. Series, vol. 93, pp. 857–892 (1979)

  9. van Breemen, N.: Dissolved aluminum in acid sulfate soils and in acid mine waters. Soil. Sci. Soc. Am. Proc. 37, 694–697 (1973)

    Article  Google Scholar 

  10. Driscoll, C.T., Schecher, W.D.: Aqueous chemistry of aluminum. In: Gitelman, H.J. (ed.) Aluminum and Health: A Critical Review, pp. 27–65. Dekker, New York (1989)

    Google Scholar 

  11. Hultberg, H., Wenblad, A.: Acid groundwater in southwestern Sweden. In: Drabløs, D., Tollan, A. (eds.) Ecological Impact of Acid Precipitation, pp. 220–221. SNSF Proc., Oslo (1980)

  12. Nordstrom, D.K., Ball, J.W.: The geochemical behavior of aluminum in acidified surface waters. Science 232, 54–56 (1986)

    Article  CAS  Google Scholar 

  13. Gu, B., Brooks, S.C., Roh, Y., Jardine, P.M.: Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum and calcium. Geochim. Cosmochim. Acta 67, 2749–2761 (2003)

    Article  CAS  Google Scholar 

  14. Pitzer, K.S.: In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., pp. 75–153. CRC, Boca Raton (1991)

    Google Scholar 

  15. Richter, U., Brand, P., Bohmhammel, K., Koennecke, T.: Thermodynamic investigation of aqueous solutions of aluminum chloride. J. Chem. Thermodyn. 32, 145–154 (2000)

    Article  CAS  Google Scholar 

  16. Leitzke, M., O’Brien, H. Jr.: Electromotive force studies in aqueous solutions at elevated temperatures. X. The thermodynamic properties of HCl-KCl, HCl-RbCl, HCl-CsCl, HCl-MgCl2, HCl-CaCl2, HCl-SrCl2, and HCl-AlCl3 mixtures. J. Phys. Chem. 72, 4408–4414 (1968)

    Article  Google Scholar 

  17. Christov, C., Moller, N.: Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochim. Cosmochim. Acta 68, 1309–1331 (2004)

    Article  CAS  Google Scholar 

  18. Palmer, D.A., Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solutions: II. The solubility of gibbsite in acidic chloride solutions from 30 to 70 °C. Geochim. Cosmochim. Acta 56, 1093–1111 (1992)

    Article  CAS  Google Scholar 

  19. Palmer, D.A., Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solutions: III. Potentiometric determination of the first hydrolysis constant of aluminum (III) in sodium chloride to 125 °C. Geochim. Cosmochim. Acta 57, 2929–2938 (1993)

    Article  CAS  Google Scholar 

  20. Wesolowski, D.J., Palmer, D.A.: Aluminum speciation and equilibria in aqueous solutions: V. Gibbsite solubility at 50 °C and pH 3–9 in 0.1 molal NaCl solutions (a general model for aluminum speciation; analytical methods). Geochim. Cosmochim. Acta 58, 2947–2969 (1994)

    Article  CAS  Google Scholar 

  21. Palmer, D.A., Benezeth, P., Wesolowski, D.J.: Aqueous high-temperature solubility studies. I. The solubility of boehmite as functions of ionic strength (to 5 molal, NaCl), temperature (100–290 °C), and pH as determined by in situ measurements. Geochim. Cosmochim. Acta 65, 2081–2095 (2001)

    Article  CAS  Google Scholar 

  22. Harvie, C., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta 44, 981–997 (1980)

    Article  CAS  Google Scholar 

  23. Harvie, C., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  24. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  25. Felmy, A.R., Weare, J.H.: The prediction of borate mineral equilibria in natural waters: Application to Searles Lake. California. Geochim. Cosmochim. Acta 50, 2771–2783 (1986)

    Article  CAS  Google Scholar 

  26. Weare, J.H.: Models of mineral solubility in concentrated brines with application to field observations. In: Carmichael, I.S.E., Eugster, H.P. (eds) Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, vol. 17, pp. 143–174. Mineralogical Society of America (1987)

  27. Moller, N.: The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  CAS  Google Scholar 

  28. Greenberg, J.P., Moller, N.: The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta 53, 2503–2518 (1989)

    Article  CAS  Google Scholar 

  29. Moller, N., Greenberg, J., Weare, J.: Computer modeling for geothermal systems: predicting carbonate and silica scale formation, CO2 breakout and H2S exchange. Transp. Porous Media 33, 173–204 (1998)

    Article  CAS  Google Scholar 

  30. Christov, C., Moller, N.: A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochim. Cosmochim. Acta 68, 3717–3739 (2004)

    Article  CAS  Google Scholar 

  31. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride, 1. Osmotic and activity coefficients of 0–10.77 mol⋅kg−1 aqueous calcium chloride solutions at 298.15 K and correlations with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)

    Article  CAS  Google Scholar 

  32. Rogers, P.S.Z., Pitzer, K.S.: High temperature thermodynamic properties of sodium sulphate solutions. J. Phys. Chem. 85, 2886–2895 (1981)

    Article  CAS  Google Scholar 

  33. Pitzer, K.S., Peiper, J.C., Busey, R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)

    CAS  Google Scholar 

  34. Little, K.: Practical analysis of high purity chemicals—V. Precision silver chloride gravimetry. Talanta 18, 927–933 (1971)

    Article  CAS  Google Scholar 

  35. Bates, R.G. (ed.): Electrochemical analysis: studies of acids, bases, and salts by Emf conductance, optical and kinetic methods. July 1964 to June 1965. N.B.S. Technical Note, p. 271 (1965)

  36. Bates, R.G.: Determination of pH, Theory and Practice, 2nd edn. Wiley, New York (1973)

    Google Scholar 

  37. Feltham, A.M., Spiro, M.: Platinized platinum electrodes. Chem. Rev. 71, 177–193 (1971)

    Article  CAS  Google Scholar 

  38. Bates, R.G., Bower, V.E.: Standard potential of the silver-silver-chloride electrode from 0° to 95 °C and the thermodynamic properties of dilute hydrochloric acid solutions. J. Res. NBS (USA) 53, 283–290 (1954)

    CAS  Google Scholar 

  39. Dickson, A.G.: Standardisation of the (AgCl + ½H2 = Ag + HCl) cell from 273.15 to 318.15 K. J. Chem. Thermodyn. 19, 993–1000 (1987)

    Article  CAS  Google Scholar 

  40. Rard, J.A.: Isopiestic determination of the osmotic coefficients of aqueous H2SO4 at 25 °C. J. Chem. Eng. Data 28, 384–387 (1983)

    Article  CAS  Google Scholar 

  41. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1−y)H2SO4+yNa2SO4}(aq) at the temperature 298.15 K I. Results for y=0.5(NaHSO4) and y=0.55595, 0.70189, and 0.84920. J. Chem. Thermodyn. 21, 539–560 (1989)

    Article  CAS  Google Scholar 

  42. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1−y)H2SO4+yNa2SO4}(aq) at the temperature 298.15 K II. Results for y=(0.12471, 0.24962, and 0.37439). J. Chem. Thermodyn. 24, 45–66 (1992)

    Article  CAS  Google Scholar 

  43. Mesmer, R.E., Holmes, H.F.: pH, definition and measurement at high temperatures. J. Solution Chem. 21, 725–744 (1992)

    Article  CAS  Google Scholar 

  44. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of H2SO4(aq) at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 24, 317–328 (1992)

    Article  CAS  Google Scholar 

  45. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of NaHSO4(aq) at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 25, 99–110 (1993)

    Article  CAS  Google Scholar 

  46. Holmes, H.F., Mesmer, R.E.: An isopiestic study of {(1−y)NaHSO4+yNa2SO4}(aq) at elevated temperatures. J. Chem. Thermodyn. 26, 581–594 (1994)

    Article  CAS  Google Scholar 

  47. Holmes, H.F., Mesmer, R.E.: An isopiestic study of aqueous solutions of the alkali metal hydrogensulfates at elevated temperatures. J. Chem. Thermodyn. 28, 67–81 (1996)

    Article  CAS  Google Scholar 

  48. Dickson, A.G., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E.: Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250 °C. J. Phys. Chem. 94, 7978–7985 (1990)

    Article  CAS  Google Scholar 

  49. Mason, C.: The activity and osmotic coefficients of trivalent metal chlorides in aqueous solutions from vapor pressure measurements at 25 °C. J. Am. Chem. Soc. 60, 1638–1647 (1938)

    Article  CAS  Google Scholar 

  50. Robinson, R.A., Stokes, R.H.: Tables of osmotic and activity coefficients of electrolytes in aqueous solutions at 25 °C. Trans. Faraday. Soc. 45, 612–624 (1949)

    Article  CAS  Google Scholar 

  51. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1965)

    Google Scholar 

  52. Mikulin, G.: Voprosy Fizicheskoi Khimii Electrolytov. Khimiya, St. Petersburg, p. 417 (1968)

    Google Scholar 

  53. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  54. Kim, H.-T., Frederick, W.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988)

    Article  CAS  Google Scholar 

  55. Christov, C.: Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at 298.15 K. CALPHAD 25, 445–454 (2001)

    Article  CAS  Google Scholar 

  56. Harned, H., Mason, C.: The activity coefficients of hydrochloric acid in aluminum chloride solutions. J. Am. Chem. Soc. 53, 3377–3380 (1931)

    Article  CAS  Google Scholar 

  57. Harned, H., Gary, R.C.: The activity coefficients of hydrochloric acid in concentrated aqueous higher valence type chloride solutions at 25 °C. III. The system hydrochloric acid-aluminum chloride. J. Am. Chem. Soc. 77, 4695–4697 (1955)

    Article  CAS  Google Scholar 

  58. Tanaka, H.: J. Soc. Chem. Ind. (Japan) 33(Suppl.), 4888 (1930); data given in Linke [64]

    Google Scholar 

  59. Malquori, G.: Atti Accad. Lincei 5, 510 (1927); data given in Linke [64]

    CAS  Google Scholar 

  60. Malquori, G.: Atti Accad. Lincei 7, 740 (1928); data given in Linke [64]

    CAS  Google Scholar 

  61. Palitzsch, S.: Z. Physik. Chem. (A) 145, 97–102 (1929); data given in Linke [64]

    CAS  Google Scholar 

  62. Seidel, W., Fischer, W.: Z. Anorg. Chem. 247, 367–383 (1941); data given in Linke [64]

    Article  CAS  Google Scholar 

  63. Ehret, W., Frere, F.: Ternary systems involving water and aluminum fluoride with aluminum nitrate, sulfate, or chloride. J. Am. Chem. Soc. 67, 68–71 (1945); data given in Linke [64]

    Article  CAS  Google Scholar 

  64. Linke, W.: Solubilities Inorganic and Metal-Organic Compounds, 4th edn., vol. 1, p. 1487. Amer. Chem. Soc., Washington, (1958) and vol. 2, p. 1914 (1965)

    Google Scholar 

  65. Gmelin’s Handbuch der Anorganischen Chemie, Eisen, Al [B]. Chemie, Berlin (1932)

  66. Malquori, G.: Atti Accad. Lincei 5, 576–578 (1927); data given in Linke [64]

    CAS  Google Scholar 

  67. Patel, K., Seshardi, S.: Phase rule study of quaternary system KCl-AlCl3-MgCl2-H2O at 25 °C. Ind. J. Chem. 6, 379–381 (1966)

    Google Scholar 

  68. Malquori, G.: Gazz. Chim. Ital. 57, 661–666 (1927); data given in Linke [64]

    CAS  Google Scholar 

  69. Miles, G.: Some studies in the system AlCl3-FeCl3-KaCl-NaCl-HCl-H2O at 25, 30 and 36 °C. J. Am. Chem. Soc. 69, 1716–1719 (1947)

    Article  CAS  Google Scholar 

  70. Holmes, H.F., Busey, R.H., Simpson, J.M., Mesmer, R.E., Archer, D.G., Wood, R.H.: The enthalpy of dilution of HCl(aq) to 648 K and 40 MPa. Thermodynamic properties. J. Chem. Thermodyn. 19, 863–890 (1987)

    Article  CAS  Google Scholar 

  71. Pitzer, K.S., Kim, J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)

    Article  CAS  Google Scholar 

  72. Pitzer, K.S.: Thermodynamics of electrolytes. V. Effects of higher-order electrostatic terms. J. Solution Chem. 4, 249–265 (1975)

    Article  CAS  Google Scholar 

  73. Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solutions: II. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100 °C. Geochim. Cosmochim. Acta 56, 1065–1091 (1992)

    Article  CAS  Google Scholar 

  74. Benezeth, P., Palmer, D.A., Wesolowski, D.J.: Aqueous high-temperature solubility studies. II. The solubility of boehmite at 0.03 m ionic strength as a function of temperature and pH as determined by in situ measurements. Geochim. Cosmochim. Acta 65, 2097–2111 (2001)

    Article  CAS  Google Scholar 

  75. Verdes, G.: Solubilite des hydroxides d’aluminum entre 20 et 300 °C. Propetes Thermodynamiques des Principals Especes Naturelles du Systems Al2O3-H2O. Thesis, Universite Paul-Sabatier (1990)

  76. Bourcier, W., Knauss, K., Jackson, K.: Aluminum hydrolysis constants to 250 °C from boehmite solubility measurements. Geochim. Cosmochim. Acta 57, 747–762 (1993)

    Article  CAS  Google Scholar 

  77. Castet, S., Dandurand, J.-L., Schott, J., Gout, R.: Boehmite solubility and aqueous aluminum speciation in hydrothermal solutions (90–350 °C): Experimental study and modelling. Geochim. Cosmochim. Acta 57, 4869–4884 (1993)

    Article  CAS  Google Scholar 

  78. Diakonov, I., Pokrovski, G., Schott, J., Castet, S., Gout, R.: An experimental and computational study of sodium-aluminum complexing in crustal fluids. Geochim. Cosmochim. Acta 60, 197–211 (1996)

    Article  CAS  Google Scholar 

  79. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, I.H., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, 1–392 (1982)

    Article  Google Scholar 

  80. Hemingway, B., Robie, R., Fisher, J., Wilson, W.: Heat capacities of gibbsite, Al(OH)3, between 13 and 480 K and magnesite, MgCO3, between 13 and 380 K and their standard entropies at 298.15 K, and the heat capacities of calorimetry conference benzoic acid between 12 and 316 K. J. Res. USGS 5, 797–806 (1977)

    CAS  Google Scholar 

  81. Hemingway, B., Robie, R., Kittrick, J.: Revised values for the Gibbs free energy of formation of {Al(OH) 4 }aq, diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamics of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples. Geochim. Cosmochim. Acta 142, 1533–1543 (1978)

    Article  Google Scholar 

  82. Hemingway, B., Kittrick, J., Peryea, F.: Relative solubilities of corundum, gibbsite, boehmite and diaspore at standard state conditions: an addendum. Clays Clay Miner. 37, 566–567 (1989)

    Article  CAS  Google Scholar 

  83. Couturier, Y., Michard, G., Sarazin, G.: Stability-constants of aluminum hydroxo complexes in aqueous-solutions at 20 °–70 °C. Geochim. Cosmochim. Acta 48, 649–659 (1984)

    Article  CAS  Google Scholar 

  84. May, H.M., Helmke, P.A., Jackson, M.L.: Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25 °C. Geochim. Cosmochim. Acta 43, 861–868 (1979)

    Article  CAS  Google Scholar 

  85. Robie, R., Hemingway, B., Fisher, J.: Corrected reprint of thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at high temperatures. USGS Bull., 1452 (1979)

  86. Naumov, G., Ryjenko, B., Hodakovskii, I.: Spravochnik Thermodynamicheskih Velichin. Atomizdat, Moscow (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Moller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christov, C., Dickson, A.G. & Moller, N. Thermodynamic Modeling of Aqueous Aluminum Chemistry and Solid-Liquid Equilibria to High Solution Concentration and Temperature. I. The Acidic H-Al-Na-K-Cl-H2O System from 0 to 100 °C. J Solution Chem 36, 1495–1523 (2007). https://doi.org/10.1007/s10953-007-9191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9191-9

Keywords

Navigation