Skip to main content
Log in

Modeling the Density and Isentropic Compressibility of Seawater

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Early studies have shown that the physical chemical properties of seawater can be estimated from the values for the major sea salts. These estimates have been made by assuming that the apparent molar properties of seawater, Φ(SW), are equal to the weighted sum of the major components of seawater ϕ(MX)

$$ \Upphi \left( {\text{SW}} \right) \, = \sum_{\text{M}} \sum_{\text{X}} E_{\text{M}} E_{\text{X}} \phi \left( {\text{MX}} \right) $$

where E M and E X are the equivalent fractions of the cations (M) and anions (X) of each major sea salt (MX). This simple chemical model has been shown to predict the apparent molar volume, compressibility, and heat capacity of seawater from 0 to 40 °C and salinities as high as 40. In this paper, we have extended this model to 95 °C for the apparent molar volume and compressibility determined from density and sound speed measurements. The results indicate that reasonable estimates of the density and speed of sound of seawater and brines can be made using this approach from 5 to 90 °C and salinities of 40 g·kg−1. For high concentrations of seawater or brines, it is necessary to consider the volume of mixing of cations and anions of similar charge in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Millero, F.J.: Theoretical estimates of the isothermal compressibility of seawater. Deep-Sea Res. 20, 101–105 (1973)

    Google Scholar 

  2. Millero, F.J.: Seawater—a test of multicomponent electrolyte solution theories. I. The apparent equivalent volume, expansibility and compressibility of artificial seawater. J. Solution Chem. 2, 1–22 (1973)

    Article  CAS  Google Scholar 

  3. Millero, F.J.: Seawater as a multicomponent. In: Goldberg, E.D. (ed.) The Sea, Ideas and Observations, vol. 5, chap. 1, pp. 3–80. Wiley Interscience, New York (1974)

  4. Millero, F.J., Ward, G.K., Chetirkin, P.V.: Relative sound velocities of sea salts at 25 °C. J. Acoust. Soc. Am. 61, 1492–1498 (1977)

    Article  CAS  Google Scholar 

  5. Millero, F.J., Chen, C.-T.: The speed of sound in mixtures of the major sea salts: a test of Young’s rule. J. Solution Chem. 14, 301–310 (1985)

    CAS  Google Scholar 

  6. Millero, F.J.: Physical Chemistry of Natural Waters, p. 654. Wiley Interscience, New York (2001)

    Google Scholar 

  7. Young, T.F.: Recent developments in the study of interactions between molecules and ions, and of equilibrium in solutions. Rec. Chem. Prog. 12, 81–95 (1951)

    CAS  Google Scholar 

  8. Young, T.F., Smith, M.B.: Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58, 716–724 (1954)

    Article  CAS  Google Scholar 

  9. Millero, F.J., Feistel, R., Wright, D.H., McDougall, T.J.: The standard composition of seawater: the definition of a reference salinity scale. Deep-Sea Res. 55(I), 50–72 (2008)

    Google Scholar 

  10. Ward, G.K., Millero, F.J.: Molal volumes of aqueous boric acid–sodium chloride solutions. J. Solution Chem. 3, 431–444 (1974)

    Article  CAS  Google Scholar 

  11. Millero, F.J., Huang, F.: The density of seawater as a function of salinity (5–70 g·kg−1) and temperature (273.15–363.15 K). Ocean Sci. 5, 91–100 (2009)

    Article  CAS  Google Scholar 

  12. Millero, F.J., Huang, F.: The compressibility of seawater from 0 to 95 °C at 1 atm. Mar. Chem. 126, 149–154 (2011)

    Article  CAS  Google Scholar 

  13. Reilly, P.J., Wood, R.H.: The prediction of the properties of mixed electrolytes from measurements on common ion mixtures. J. Phys. Chem. 73, 4292–4297 (1969)

    Article  CAS  Google Scholar 

  14. Kell, G.S.: The density, thermal expansivity and compressibility of liquid water from 0 to 150 °C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on the 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)

    Article  CAS  Google Scholar 

  15. Connaughton, L.M., Hershey, J.P., Millero, F.J.: PVT properties of concentrated electrolytes. V. The density of NaCl, Na2SO4, MgCl2 and MgSO4 from 0 to 100 °C. J. Solution Chem. 15, 989–1002 (1986)

    Article  CAS  Google Scholar 

  16. Chen, C.-T., Chen, L.-S., Millero, F.J.: The speed of sound in NaCl, MgCl2, Na2SO4 aqueous solutions as functions of concentration, temperature and pressure. J. Acoust. Soc. Am. 63, 1795–1800 (1978)

    Article  CAS  Google Scholar 

  17. Millero, F.J., Rico, J., Schreiber, D.R.: PVT properties of concentrated aqueous electrolytes. II. Compressibilities and apparent molar compressibilities of aqueous NaCl, Na2SO4, MgCl2, and MgSO4 from dilute solution to saturation and from 0 to 50 °C. J. Solution Chem. 11, 671–686 (1982)

    Article  CAS  Google Scholar 

  18. Millero, F.J., Vinokurova, F., Fernandez, M., Hershey, J.P.: PVT properties of concentrated electrolytes. VI. The speed of sound and apparent molal compressibilities of NaCl, Na2SO4, MgCl2 and MgSO4 solutions from 0 to 100 °C. J. Solution Chem. 16, 269–284 (1987)

    Article  CAS  Google Scholar 

  19. Lo Surdo, A., Alzola, E.M., Millero, F.J.: The P.V.T. properties of concentrated aqueous electrolytes. I. Densities and apparent molar volumes of NaCl, Na2SO4, MgCl2 and MgSO4 solutions from 0.1 mol·kg−1 to saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. 14, 649–662 (1982)

    Article  CAS  Google Scholar 

  20. Hershey, J.P., Sotolongo, S., Millero, F.J.: Densities and compressibilities of aqueous sodium carbonate and bicarbonate from 0 to 45 °C. J. Solution Chem. 12, 233–254 (1983)

    Article  CAS  Google Scholar 

  21. Hershey, J.P., Damasceno, R., Millero, F.J.: The densities and compressibilities of aqueous HCl and NaOH solutions from 0 to 50 °C. J. Solution Chem. 13, 825–848 (1984)

    Article  CAS  Google Scholar 

  22. Dedick, E., Stade, D., Sotolongo, S., Hershey, J.P., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. IX. The volume properties of KCl and K2SO4 and their mixtures with NaCl and Na2SO4 as a function of temperature. J. Solution Chem. 19, 353–374 (1990)

    Article  CAS  Google Scholar 

  23. Pierrot, D., Millero, F.J.: The apparent molal volume and compressibility of seawater fit to the Pitzer equations. J. Solution Chem. 29, 719–742 (2000)

    Article  CAS  Google Scholar 

  24. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn, chap. 3, pp. 75–153. CRC Press, Boca Raton (1991); ISBN 0-8493-5415-3

  25. Millero, F.J., Sotolongo, S.: PVT properties of concentrated aqueous electrolytes. VII. The volumes of mixing the reciprocal salt pairs KCl, K2SO4, NaCl, Na2SO4 at 25°C and I = 1.5 molal. J. Chem. Eng. Data 31, 470–472 (1986)

    Article  CAS  Google Scholar 

  26. Millero, F.J., Lampreia, M.I.: The PVT properties of concentrated aqueous electrolytes. IV. Changes in the compressibilities of mixing the major sea salts at 25 °C. J. Solution Chem. 14, 853–864 (1985)

    Article  CAS  Google Scholar 

  27. Millero, F.J., Connaughton, L.M., Vinokurova, F., Chetirkin, P.V.: PVT properties of concentrated aqueous electrolytes. III. Volume changes for mixing the major sea salts at I = 1.0 and 3.0 at 25 °C. J. Solution Chem. 14, 837–851 (1985)

    Article  CAS  Google Scholar 

  28. Connaugton, L.M., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. VIII. The volume changes for mixing the major sea salts at I = 3.0 from 5 to 95 °C. J. Solution Chem. 16, 491–502 (1987)

    Article  Google Scholar 

  29. Connaugton, L.M., Millero, F.J., Pitzer, K.S.: Volume changes for mixing the major sea salts: equations valid to ionic strength 3.0 and temperature 95 °C. J. Solution Chem. 18, 1007–1017 (1989)

    Article  Google Scholar 

  30. Krumgalz, B.S., Pogorelsky, R., Losilevskii, Ya.A, Weiser, A., Pitzer, K.S.: Ion interaction approach for volumetric calculations for solutions of single electrolytes at 25 °C. J. Solution Chem. 23, 849–875 (1994)

    Article  CAS  Google Scholar 

  31. Krumgalz, B.S., Pogorelsky, R., Pitzer, K.S.: Ion interaction approach to calculations of volumetric properties of aqueous multiple-solute electrolyte solutions. J. Solution Chem. 24, 1025–1038 (1995)

    Article  CAS  Google Scholar 

  32. Krumgalz, B.S., Pogorelsky, Pitzer, K.S.: Volumetric properties of single aqueous electrolytes from zero to saturation concentration 298.15°K represented by Pitzer’s ion interaction equations. J. Phys. Chem. Ref. Data 25, 663–689 (1996)

    Article  CAS  Google Scholar 

  33. Wood, R.H., Reilly, P.J.: Electrolytes. Annu. Rev. Phys. Chem. 21, 387–406 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the support of the Oceanographic Section of the National Science Foundation and the National Oceanic and Atmospheric Administration for supporting our Marine Physical Chemical Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Millero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, C., Millero, F.J. Modeling the Density and Isentropic Compressibility of Seawater. J Solution Chem 42, 303–316 (2013). https://doi.org/10.1007/s10953-013-9961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9961-5

Keywords

Navigation