Skip to main content

Advertisement

Log in

Phosphate Removal from Aqueous Solution by an Effective Clay Composite Material

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Adsorption is an effective treatment process for removing phosphorus and thus controlling eutrophication. In this study, a clay composite material called Al–dolomite–montmorillonite (Al–DM) was prepared and characterized. Al–DM performed well with respect to phosphate removal, with its performance depending on the Al–DM loading, contact time, initial phosphorus concentration and initial solution pH. Adsorption mechanisms were investigated by conducting batch tests on phosphate adsorption using the Al–DM. The adsorption process fitted both the pseudo-second-order kinetics model and the intra-particle diffusion model. The Langmuir, Freundlich and BET models all adequately described the adsorption isotherm data. Thermodynamic studies showed that the adsorption process was endothermic and spontaneous in nature. Al–DM is an effective adsorbent for phosphate removal mainly due to its hierarchical porous structures as shown by characterization with SEM and EDS. Chemical changes occurring before and after adsorption in a water environment indicated that Al–DM had little negative effect on water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lau, S.S.S., Lane, S.N.: Biological and chemical factors influencing shallow lake eutrophication: S long-term study. Sci. Total Environ. 288, 167–181 (2002)

    Article  CAS  Google Scholar 

  2. Heisler, J., Glibert, P.M., Burkholder, J.M., Anderson, D.M., Cochlan, W., Dennison, W.C.: Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8, 3–13 (2008)

    Article  CAS  Google Scholar 

  3. Tingxi, Z., Xiaorong, W., Xiangcan, J.: Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environ. Pollut. 150, 288–294 (2007)

    Article  Google Scholar 

  4. Yeoman, S., Stephanson, T., Lester, J.N.: The removal of phosphorus during wastewater treatment: a review. Environ. Pollut. 49, 183–233 (1988)

    Article  CAS  Google Scholar 

  5. Tchobanoglous, G.: Wastewater Engineering: Treatment, Disposal and Reuse. McGraw Hill, New York (1991)

    Google Scholar 

  6. De-Bashana, L.E., Bashan, Y.: Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 38, 4222–4246 (2004)

    Article  Google Scholar 

  7. Sibrell, L.P., Montgomery, G.A., Ritenour, K.L., Tucker, T.W.: Removal of phosphorus from agriculture wastewater using adsorption media prepared from acid drainage sludge. Water Res. 43, 2240–2250 (2009)

    Article  CAS  Google Scholar 

  8. Kostura, B., Kulveitova, H., Lesko, J.: Blast furnace slags as sorbent of phosphate from water solutions. Water Res. 39, 1795–1802 (2005)

    Article  CAS  Google Scholar 

  9. Yang, Y., Zhao, Y.Q., Kearney, P.: Influence of ageing on the structure and phosphate adsorption capacity of dewatered alum sludge. Chem. Eng. J. 145, 276–284 (2008)

    Article  CAS  Google Scholar 

  10. Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., Sun, Z.: Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J. Hazard. Mater. 139, 293–300 (2007)

    Article  CAS  Google Scholar 

  11. Wu, D., Zhang, B., Li, C., Zhang, Z., Kong, H.: Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. J. Colloid Interface Sci. 304, 300–306 (2006)

    Article  CAS  Google Scholar 

  12. Ferro-Garca, M.A., Carrasco-Marm, F., Rivera-Utrilla, J., Utrera-Hidalgo, E., Moreno-Castilla, C.: The use of activated carbon columns for the removal orthophosphate ions from aqueous solutions. Carbon 28, 91–95 (1990)

    Article  Google Scholar 

  13. Oguz, E.: Removal of phosphate from aqueous solution with blast furnace slag. J. Hazard. Mater. 114, 131–137 (2004)

    Article  CAS  Google Scholar 

  14. Xue, Y.J., Hou, H.B., Zhu, S.J.: Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J. Hazard. Mater. 162, 973–980 (2009)

    Article  CAS  Google Scholar 

  15. Drizo, A., Forget, C., Chapuis, R.P., Comeau, Y.: Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Res. 40, 1547–1554 (2006)

    Article  CAS  Google Scholar 

  16. Gimsing, A.L., Szilas, C., Borggaard, O.K.: Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania. Geoderma 138, 127–132 (2007)

    Article  CAS  Google Scholar 

  17. Li, Y.Z., Liu, C.J., Luan, Z.K., Peng, X.J., Zhu, C.L., Chen, Z.Y., Zhang, Z.G., Fan, J.H., Jia, Z.P.: Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J. Hazard. Mater. 137, 374–383 (2006)

    Article  CAS  Google Scholar 

  18. Moon, Y.H., Kim, J.G., Ahn, J.S., Lee, G.H., Moon, H.S.: Phosphate removal using sludge from fuller’s earth production. J. Hazard. Mater. 143, 41–48 (2007)

    Article  CAS  Google Scholar 

  19. Karaca, S., Gürses, A., Ejder, M., Açıkyıldız, M.: Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J. Hazard. Mater. 128, 273–279 (2006)

    Article  CAS  Google Scholar 

  20. Roques, H., Nufroho-Jeudy, L., Lebugle, A.: Phosphorus removal from wastewater by half-burned dolomite. Water Res. 25, 959–965 (1991)

    Article  CAS  Google Scholar 

  21. Karaca, S., Gürses, A., Ejder, M., Açıkyıldız, M.: Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 277, 257–263 (2004)

    Article  CAS  Google Scholar 

  22. EPA: Water and Wastewater Monitoring Analysis Method, 4th edn, pp. 246–248. China Environmental Science, Beijing (2002)

    Google Scholar 

  23. Chen, N., Zhang, Z.Y., Feng, C.P., Li, M., Zhu, D.R., Chen, R.Z.: An excellent fluoride sorption behavior of ceramic adsorbent. J. Hazard. Mater. 183, 460–465 (2010)

    Article  CAS  Google Scholar 

  24. Zhang, J.D., Shen, Z.M., Shan, W.P., Wang, W.H.: Adsorption behavior of phosphate on lanthanum(III)-coordinated diamino-functionalized 3D hybrid mesoporous silicates material. J. Hazard. Mater. 186, 76–83 (2011)

    Article  CAS  Google Scholar 

  25. Ning, P., Bark, H.J., Li, B., Lu, X., Zhang, Y.: Phosphate removal from wastewater by model-La(III) zeolite adsorbents. J. Environ. Sci. 20, 670–674 (2008)

    Article  CAS  Google Scholar 

  26. Li, K.Q., Li, Y., Zheng, Z.: Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J. Hazard. Mater. 178, 553–559 (2010)

    Article  CAS  Google Scholar 

  27. Rodrigues, L.A., Pinto da Silva, M.L.C.: Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method. Desalination 263, 29–35 (2010)

    Article  CAS  Google Scholar 

  28. Zhang, J.D., Shen, Z.M., Shan, W.P., Chen, Z.Y., Mei, Z.J., Lei, Y.M., Wang, W.H.: Adsorption behavior of phosphate on lanthanum(III) doped mesoporous silicates material. J. Environ. Sci. (China) 22, 507–511 (2010)

    Article  CAS  Google Scholar 

  29. Weber, W.J., Morris, J.C.: Proceedings of the International Conference on Water Pollution Symposium. Vol. 2, pp. 231–266. Pergamon, Oxford (1962)

  30. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  CAS  Google Scholar 

  31. Lyubchik, S.I., Lyubchik, A.I., Galushko, O.L., Tikhonova, L.P., Vital, J., Fonsca, I.M., Lyubchik, S.B.: Kinetics and thermodynamics of Cr(III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf. A 242, 151–158 (2004)

    Article  CAS  Google Scholar 

  32. Masue, Y., Loeppert, R.H., Kramer, T.A.: Arsenate-arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ. Sci. Tech. 41, 837–842 (2007)

    Article  CAS  Google Scholar 

  33. World Health Organization: Guidelines for drinking-water quality, vol. 1, 3rd edn. World Health Organization, Geneva (2004)

    Google Scholar 

  34. Xue, Y.J., Hou, H.B., Zhu, S.J.: Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J. Hazard. Mater. 162, 973–980 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundamental Research Funds for the Central Universities, Water Pollution Control and Treatment Key Projects (2009ZX07 102-002-01), and National Natural Science Foundation (No. 31140082) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Chen, N., Hu, W. et al. Phosphate Removal from Aqueous Solution by an Effective Clay Composite Material. J Solution Chem 42, 691–704 (2013). https://doi.org/10.1007/s10953-013-9985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9985-x

Keywords

Navigation