Skip to main content
Log in

Nonergodicity of a Time Series Obeying Lévy Statistics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Time-averaged autocorrelation functions of a dichotomous random process switching between 1 and 0 and governed by wide power law sojourn time distribution are studied. Such a process, called a Lévy walk, describes dynamical behaviors of many physical systems, fluorescence intermittency of semiconductor nanocrystals under continuous laser illumination being one example. When the mean sojourn time diverges the process is non-ergodic. In that case, the time average autocorrelation function is not equal to the ensemble averaged autocorrelation function, instead it remains random even in the limit of long measurement time. Several approximations for the distribution of this random autocorrelation function are obtained for different parameter ranges, and favorably compared to Monte Carlo simulations. Nonergodicity of the power spectrum of the process is briefly discussed, and a nonstationary Wiener-Khintchine theorem, relating the correlation functions and the power spectrum is presented. The considered situation is in full contrast to the usual assumptions of ergodicity and stationarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Allegrini, P. Grigolini, L. Palatella and B. J. West, Non-Poisson dichotomous noise: Higher-order correlation functions and aging, Phys. Rev. E 70, 046118 (2004).

    Article  Google Scholar 

  2. W. Nadler and D. L. Stein, Biological transport processes and space dimension, Proc. Natl. Acad. Sci. USA 88, 6750–6754 (1991).

    Article  Google Scholar 

  3. I. Goychuk and P. Hänggi, Ion channel gating: A first-passage time analysis of the Kramers type, Proc. Natl. Acad. Sci. USA 99, 3552–3556 (2002).

    Article  Google Scholar 

  4. T. G. Dewey, From microarrays to networks: mining expression time series, Drug Discovery Today 7, S170–S175 (2002).

    Article  Google Scholar 

  5. S. Roy, I. Bose and S. S. Manna, A cooperative stochastic model of gene expression, International J. Modern Phys. C 12, 413–420 (2001).

    Article  Google Scholar 

  6. N. Masuda and K. Aihara, Ergodicity of spike trains: When does trial averaging make sense?, Neural Computation 15, 1341–1372 (2003).

    Article  MATH  Google Scholar 

  7. E. Korobkova, T. Emonet, J. M. G. Vilar, T. S. Shimizu and P. Cluzel, From molecular noise to behavioural variability in a single bacterium, Nature 428, 574–578 (2004).

    Article  Google Scholar 

  8. M. Haase, C. G. Hübner, E. Reuther, A. Herrmann, K. Müllen and Th. Basché, Exponential and power-law kinetics in single-molecule fluorescence intermittency, J. Phys. Chem. B 108, 10445–10450 (2004).

    Article  Google Scholar 

  9. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature 383, 802–804 (1996).

    Article  Google Scholar 

  10. M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher and D. J. Nesbitt, Modeling distributed kinetics in isolated semiconductor quantum dots, Phys. Rev. B 67, 125304 (2003).

    Article  Google Scholar 

  11. K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo and M. G. Bawendi, Blinking statistics in single semiconductor nanocrystal quantum dots Phys. Rev. B 63, 205316 (2001).

    Article  Google Scholar 

  12. G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles and M. Dahan, Bunching and antibunching in the fluorescence of semiconductor nanocrystals, Optics Letters 26, 1891–1893 (2001).

    Article  Google Scholar 

  13. X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J.-P. Bouchaud, and M. Dahan, Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys. Rev. Lett. 90, 120601 (2003).

    Article  Google Scholar 

  14. G. Zumofen, J. Hohlbein and C. G. Hübner, Recurrence and photon statistics in fluorescence fluctuation spectroscopy, Phys. Rev. Lett. 93, 260601 (2004).

    Article  Google Scholar 

  15. C. Godréche and J. M. Luck, Statistics of the occupation time of renewal processes, J. Stat. Phys. 104, 489–524(2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Baldassarri, J. P. Bouchaud, I. Dornic, and C. Godréche, Statistics of persistent events: An exactly soluble model, Phys. Rev. E 59, R20–R23 (1999).

    Article  Google Scholar 

  17. J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports 195, 127–293 (1990).

    Article  MathSciNet  Google Scholar 

  18. J. Klafter, M. F. Shlesinger, and G. Zumofen, Beyond Brownian motion, Phys. Today 49(2), 33–39 (1996).

    Article  Google Scholar 

  19. R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339, 1–77 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Barkai, Y. Jung and Silbey, Theory of single-molecule spectroscopy: beyond the ensemble average, Annu. Rev. Phys. Chem. 55, 457–507 (2004).

    Article  Google Scholar 

  21. G. Zumofen, and J. Klafter, Scale-invariant motion in intermittent chaotic systems, Phys. Rev. E 47, 851–863 (1993).

    Article  MATH  Google Scholar 

  22. E. Marinari and G. Parisi, On toy ageing, J. Phys. A 26, L1149–L1156 (1993).

    Article  Google Scholar 

  23. J. P. Bouchaud, Weak ergodicity breaking and aging in disordered systems, J. Phys. I France 2, 1705–1713 (1992).

    Article  Google Scholar 

  24. E. Barkai, and Y. C. Cheng, Aging continuous time random walks, J. Chem. Phys. 118, 6167–6178 (2003).

    Article  Google Scholar 

  25. E. Barkai, Aging in subdiffusion generated by a deterministic dynamical system, Phys. Rev. Lett. 90, 104101 (2003).

    Article  Google Scholar 

  26. G. Margolin and E. Barkai, Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes, J. Chem. Phys. 121, 1566–1577 (2004).

    Article  Google Scholar 

  27. G. Aquino, L. Palatella and P. Grigolini, Absorption and emission in the non-Poissonian case, Phys. Rev. Lett. 93, 050601 (2004).

    Article  Google Scholar 

  28. R. Verberk, and M. Orrit, Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times, J. Chem. Phys. 119, 2214–2222 (2003).

    Article  Google Scholar 

  29. G. Margolin and E. Barkai, Nonergodicity of blinking nanocrystals and other Lévy-walk processes, Phys. Rev. Lett. 94, 080601 (2005).

    Article  Google Scholar 

  30. J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc. 88, 380–387 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Feller, An Introduction to Probability Theory and its Application Vol. 2, (Wiley New York 1970).

  32. A. Dhar and S. N. Majumdar, Residence time distribution for a class of gaussian Markov processes, Phys. Rev. E 59, 6413–6418 (1999).

    Article  MathSciNet  Google Scholar 

  33. S. N. Majumdar, Persistence in nonequilibrium systems, cond-mat/9907407 (2004).

  34. S. N. Majumdar and A. Comtet, Local and occupation time of a particle diffusing in a random medium, Phys. Rev. Lett. 89, 060601 (2002).

    Article  Google Scholar 

  35. T. J. Newman and W. Loinaz, Critical dimensions of the diffusion equation, Phys. Rev. Lett. 86, 2712–2715 (2001).

    Article  Google Scholar 

  36. G. Bel and E. Barkai, Weak ergodicity breaking in the continuous-time random walk, Phys. Rev. Lett. 94, 240602 (2005).

    Article  Google Scholar 

  37. M. Pelton, D. G. Grier and P. Guyot-Sionnest, Characterizing quantum-dot blinking using noise power spectra, Appl. Phys. Lett. 85, 819–821 (2004).

    Article  Google Scholar 

  38. G. Zumofen and J. Klafter, Power spectra and random walks in intermittent chaotic systems, Physica D 69, 436–446 (1993).

    Article  MATH  Google Scholar 

  39. J. Davidsen and H. G. Schuster, Simple model for 1/fα noise, Phys. Rev. E 65, 026120 (2002).

    Article  Google Scholar 

  40. M. B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Reviews of Modern Physics 60(2), 537–571 (1988).

    Article  Google Scholar 

  41. J. Schriefl, M. Clusel, D. Carpentier and P. Degiovanni, Nonstationary dephasing of two-level systems, Europhys. Lett. 69, 156 (2005); Dephasing by a nonstationary classical intermittent noise, cond-mat/0501301 (2005).

    Article  Google Scholar 

  42. G. Margolin, V. Protasenko, M. Kuno and E. Barkai, Power law blinking quantum dots: Stochastic and physical models, cond-mat/0506512 (2005).

  43. H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, I. Rech, S. Cova, L. Xun and X. S. Xie, Protein conformational dynamics probed by single-molecule electron transfer, Science 302, 262–266 (2003).

    Article  Google Scholar 

  44. I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T. Valentine, A. R. Bausch and D. A. Weitz, Anomalous diffusion probes microstructure dynamics of entangled F-actin networks, Phys. Rev. Lett. 92, 178101 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, G., Barkai, E. Nonergodicity of a Time Series Obeying Lévy Statistics. J Stat Phys 122, 137–167 (2006). https://doi.org/10.1007/s10955-005-8076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8076-9

Key Words

Navigation