Skip to main content
Log in

Potts Models in the Continuum. Uniqueness and Exponential Decay in the Restricted Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we study a continuum version of the Potts model, where particles are points in ℝd, d≥2, with a spin which may take S≥3 possible values. Particles with different spins repel each other via a Kac pair potential of range γ −1, γ>0. In mean field, for any inverse temperature β there is a value of the chemical potential λ β at which S+1 distinct phases coexist. We introduce a restricted ensemble for each mean field pure phase which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin-Shlosman theory (Dobrushin and Shlosman in J. Stat. Phys. 46(5–6):983–1014, 1987), we prove that while the Dobrushin high-temperatures uniqueness condition does not hold, yet a finite size condition is verified for γ small enough which implies uniqueness and exponential decay of correlations. In a second paper (De Masi et al. in Coexistence of ordered and disordered phases in Potts models in the continuum, 2008), we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodineau, T., Presutti, E.: Phase diagram of Ising systems with additional long range forces. Commun. Math. Phys. 189, 287–298 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Bovier, A., Zahradnik, M.: The low temperature phase of Kac-Ising models. J. Stat. Phys. 87, 311–332 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bovier, A., Merola, I., Presutti, E., Zahradnìk, M.: On the Gibbs phase rule in the Pirogov-Sinai regime. J. Stat. Phys. 114, 1235–1267 (2004)

    Article  MATH  ADS  Google Scholar 

  4. Buttà, P., Merola, I., Presutti, E.: On the validity of the van der Waals theory in Ising systems with long range interactions. Markov Process. Relat. Fields 3, 63–88 (1977)

    Google Scholar 

  5. Cassandro, M., Presutti, E.: Phase transitions in Ising systems with long but finite range interactions. Markov Process. Relat. Fields 2, 241–262 (1996)

    MATH  MathSciNet  Google Scholar 

  6. De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum (2008, in preparation)

  7. Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions: constructive description. J. Stat. Phys. 46(5–6), 983–1014 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Georgii, H.-O., Häggström, O.: Phase transition in continuum Potts models. Commun. Math. Phys. 181, 507–528 (1996)

    Article  MATH  ADS  Google Scholar 

  9. Georgii, H.-O., Miracle-Sole, S., Ruiz, J., Zagrebnov, V.: Mean field theory of the Potts Gas. J. Phys. A 39, 9045–9053 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Gobron, T., Merola, I.: First order phase transitions in Potts models with finite range interactions. J. Stat. Phys. 126, 507–583 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lebowitz, J.L., Mazel, A., Presutti, E.: Liquid vapour phase transitions for systems with finite range interactions. J. Stat. Phys. 94, 955–1025 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Presutti, E.: Scaling limits in statistical mechanics and microstructures in continuum mechanics. In: Theoretical and Mathematical Physics. Springer, Berlin (2008, to appear)

  13. Ruelle, D.: Widom-Rowlinson: Existence of a phase transition in a continuous classical system. Phys. Rev. Lett. 27, 1040–1041 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  14. van der Berg, J.: A uniqueness condition for Gibbs measures with application to the two dimensional antiferromagnet. Commun. Math. Phys. 152, 161–166 (1993)

    Article  MATH  ADS  Google Scholar 

  15. van der Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab. 22, 749–763 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. van der Berg, J., Steif, J.E.: Percolation and the hard core lattice model. Stoch. Process. Appl. 49, 179–197 (1994)

    Article  MATH  Google Scholar 

  17. Zahradnìk, M.: A short course on the Pirogov-Sinai theory. Rend. Mat. Appl. 18, 411–486 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna De Masi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Masi, A., Merola, I., Presutti, E. et al. Potts Models in the Continuum. Uniqueness and Exponential Decay in the Restricted Ensembles. J Stat Phys 133, 281–345 (2008). https://doi.org/10.1007/s10955-008-9603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9603-2

Keywords

Navigation