Skip to main content
Log in

Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Kuramoto model has been introduced in order to describe synchronization phenomena observed in groups of cells, individuals, circuits, etc. We look at the Kuramoto model with white noise forces: in mathematical terms it is a set of N oscillators, each driven by an independent Brownian motion with a constant drift, that is each oscillator has its own frequency, which, in general, changes from one oscillator to another (these frequencies are usually taken to be random and they may be viewed as a quenched disorder). The interactions between oscillators are of long range type (mean field). We review some results on the Kuramoto model from a statistical mechanics standpoint: we give in particular necessary and sufficient conditions for reversibility and we point out a formal analogy, in the N→∞ limit, with local mean field models with conservative dynamics (an analogy that is exploited to identify in particular a Lyapunov functional in the reversible set-up). We then focus on the reversible Kuramoto model with sinusoidal interactions in the N→∞ limit and analyze the stability of the non-trivial stationary profiles arising when the interaction parameter K is larger than its critical value K c . We provide an analysis of the linear operator describing the time evolution in a neighborhood of the synchronized profile: we exhibit a Hilbert space in which this operator has a self-adjoint extension and we establish, as our main result, a spectral gap inequality for every K>K c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  ADS  Google Scholar 

  2. Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa 22(3), 607–694 (1968)

    MATH  MathSciNet  Google Scholar 

  3. Asselah, A., Giacomin, G.: Metastability for the exclusion process with mean field interactions. J. Stat. Phys. 93, 1051–1110 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  5. Brezis, H.: Analyse Fonctionnelle. Théorie et Applications. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983)

    MATH  Google Scholar 

  6. Buttà, P., Lebowitz, J.L.: Hydrodynamic limit of Brownian particles Interacting with short and long range forces. J. Stat. Phys. 94, 653–694 (1999)

    Article  MATH  Google Scholar 

  7. Daido, H.: Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog. Theor. Phys. 88, 1213–1218 (1992)

    Article  ADS  Google Scholar 

  8. Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84, 735–772 (1996)

    Article  MATH  ADS  Google Scholar 

  9. Gärtner, J.: On McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137, 197–248 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions I: macroscopic limits. J. Stat. Phys. 87, 37–61 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Giacomin, G., Lebowitz, J.L.: Phase segregation dynamics in particle systems with long range interactions II: interface motion. SIAM J. Appl. Math. 58, 1707–1729 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. den Hollander, F.: Large Deviations. Fields Institute Monographs. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  13. Joshi, C.M., Bissu, S.K.: Some inequalities of Bessel and modified Bessel functions. J. Aust. Math. Soc. Ser. A 50, 333–342 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 132. Springer, Berlin (1976)

    MATH  Google Scholar 

  15. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  16. Jiang, D.-Q., Qian, M., Qian, M.-P.: Mathematical Theory of Nonequilibrium Steady States. Lecture Notes in Mathematics, vol. 1833. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Oelschläger, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12, 458–479 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pearce, P.A.: Mean-field bounds on the magnetization for ferromagnetic spin models. J. Stat. Phys. 25, 309–320 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  19. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Silver, H., Frankel, N.E., Ninham, B.W.: A class of mean field models. J. Math. Phys. 13, 468–474 (1972)

    Article  ADS  Google Scholar 

  21. Sakaguchi, H.: Cooperative phenomena in coupled oscillator systems under external fields. Prog. Theor. Phys. 79, 39–46 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, San Diego (1972)

    Google Scholar 

  23. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    MATH  Google Scholar 

  24. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giambattista Giacomin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, L., Giacomin, G. & Pakdaman, K. Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model. J Stat Phys 138, 270–290 (2010). https://doi.org/10.1007/s10955-009-9908-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9908-9

Navigation