Skip to main content
Log in

Parametric Estimation of Stationary Stochastic Processes Under Indirect Observability

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For many natural turbulent dynamic systems, observed high dimensional dynamic data can be approximated at slow time scales by a process X t driven by a systems of stochastic differential equations (SDEs). When one tries to estimate the parameters of this unobservable SDEs systems, there is a clear mismatch between the available data and the SDEs dynamics to be parametrized. Here, we formalize this Indirect Observability framework as follows.

We consider an unobservable centered stationary Gaussian process X t with covariance function K(u,θ)=E[X t X t+u ], parametrized by an unknown vector θ which lies in a compact subset Θ of ℝp. We assume that the only observable data are generated by centered stationary processes \(Y_{t}^{\varepsilon }\), indexed by a scale separation parameter ε>0. These approximating processes have arbitrary probability distributions, exponentially decaying covariances, and are assumed to converge to X t in L 4 as ε→0. We show how to construct estimators of the underlying parameter vector θ which depend only on the observable data \(Y_{t}^{\varepsilon }\), and converge to the true parameter values as ε→0.

We study adaptive subsampling schemes involving [N(ε)+k(ε)]→∞ observations \(V_{n} = Y^{\varepsilon }_{n \Delta(\varepsilon )}\) extracted from the approximating process \(Y^{\varepsilon }_{t}\) by subsampling at time intervals Δ(ε)→0. We focus on parameter estimators which are smooth functions of subsampled empirical covariance estimators \(\hat{r}_{k}(N,\Delta)\) associated to non vanishing time lags k(ε)Δ(ε) tending to fixed positive limits as ε→0.

We show that provided lim  ε→0 N(ε)Δ(ε)=+∞, these subsampled approximate covariance estimators converge in L 2 to the true covariance function K(u,θ) of X t for all u,θ. Applying a generic version of the method of moments suitably boosted up by adequately adjusted multiple subsampling schemes, we show that this implies, in a very wide range of situations, the existence of consistent estimators \(\hat{\theta}(\varepsilon )\) of the unknown parameter vector θ, based only on adequately subsampled approximate data \(Y^{\varepsilon }_{t}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait-Sahalia, Y., Mykland, P., Zhang, L.: How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18(2), 351 (2005)

    Article  Google Scholar 

  2. Arnold, L., Imkeller, P., Wu, Y.: Reduction of deterministic coupled atmosphere–ocean models to stochastic ocean models: a numerical case study of the Lorenz–Maas system. Dyn. Syst. 18(4), 295–350 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azencott, R., Dacunha-Castelle, D.: Series of Irregular Observations: Forecasting and Model Building. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  4. Azencott, R., Beri, A., Timofeyev, I.: Adaptive sub-sampling for parametric estimation of Gaussian diffusions. J. Stat. Phys. 139(6), 1066–1089 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Azencott, R., Beri, A., Timofeyev, I.: Sub-sampling in parametric estimation of stochastic differential equations from discrete data (2010, submitted)

  6. Barndorff-Nielsen, O., Shephard, N.: Estimating quadratic variation using realized variance. J. Appl. Econom. 17(5), 457–477 (2002)

    Article  Google Scholar 

  7. Berner, J.: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci. 62, 2098–2117 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  8. Crommelin, D., Vanden-Eijnden, E.: Diffusion estimation from multiscale data by operator eigenpairs (2010, submitted)

  9. Culina, J., Kravtsov, S., Monahan, A.H.: Stochastic parameterisation schemes for use in realistic climate models J. Atmos. Sci. 68, 284–299 (2010)

    Article  ADS  Google Scholar 

  10. DelSole, T.: A fundamental limitation of Markov models. J. Atmos. Sci. 57, 2158–2168 (2000)

    Article  ADS  Google Scholar 

  11. Deuflhard, P., Schütte, C.: Molecular conformation dynamics and computational drug design. In: Applied Mathematics Entering the 21st Century: Invited Talks from the ICIAM 2003 Congress, p. 91. Society for Industrial Mathematics, Philadelphia (2004)

    Google Scholar 

  12. Franzke, C., Majda, A.J.: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci. 63, 457–479 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  13. Franzke, C., Majda, A.J., Vanden-Eijnden, E.: Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci. 62, 1722–1745 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hasselman, K.: Stochastic climate models. Part I: Theory. Tellus 28, 473–485 (1976)

    Article  ADS  Google Scholar 

  15. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327 (1993)

    Article  Google Scholar 

  16. Hummer, G.: Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations. New J. Phys. 7, 34 (2005)

    Article  Google Scholar 

  17. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A priori tests of a stochastic mode reduction strategy. Physica D 170, 206–252 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci. 60(14), 1705–1722 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. Papavasiliou, A., Pavliotis, G.A., Stuart, A.: Maximum likelihood drift estimation for multiscale diffusions. Stoch. Process. Appl. 119(10), 3173–3210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pavliotis, G.A., Stuart, A.: Parameter estimation for multiscale diffusions. J. Stat. Phys. 127, 741–781 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Zhang, L., Mykland, P., Ait-Sahalia, Y.: A tale of two time scales. J. Am. Stat. Assoc. 100(472), 1394–1411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Timofeyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azencott, R., Beri, A. & Timofeyev, I. Parametric Estimation of Stationary Stochastic Processes Under Indirect Observability. J Stat Phys 144, 150–170 (2011). https://doi.org/10.1007/s10955-011-0253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0253-4

Keywords

Navigation