Skip to main content
Log in

Length-Scale Dependence of Hydration Free Energy: Effect of Solute Charge

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Size and curvature are important determinants of particle wettability, in addition to surface chemistry and texture. Hydration free energy of a nonpolar solute scales with volume for small solutes and with surface area for larger ones. If the solute acquires a surface charge, the scaling regimes can be affected, with size-dependence of the charge playing a critical role. For isolated particles grown at fixed surface charge density, the Born approximation gives scaling of hydration free energy with volume. We consider a distinctly different but practically important scenario, where the charged solute and surrounding counterions are dissolved together. For this process, our molecular simulations demonstrate the electrostatic contribution to the solvation free energy, calculated per unit area of the solute, to be virtually independent of solute size. We explain this behavior in terms of counterion shielding effect on the curvature-dependent solute energy in the dehydrated state, an effect closely balanced by the influence of dielectric screening in water. As a result, for moderate surface charge densities of the solute, the net electrostatic contribution is dominated by counterion solvation, and scales with solute surface area independently of the ionic strength in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hummer, G., Garde, S., Garcia, A.E., Pohorille, A., Pratt, L.R.: An information theory model of hydrophobic interactions. Proc. Natl. Acad. Sci. USA 93(17), 8951–8955 (1996)

    Article  ADS  Google Scholar 

  2. Luzar, A.: General discussion. Faraday Discuss. 103, 203–226 (1996)

    Article  ADS  Google Scholar 

  3. Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999)

    Article  Google Scholar 

  4. Ashbaugh, H.S., Paulaitis, M.E.: Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123(43), 10721–10728 (2001)

    Article  Google Scholar 

  5. Ashbaugh, H.S., Pratt, L.R.: Colloquium: Scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78(1), 159–178 (2006)

    Article  ADS  Google Scholar 

  6. Rajamani, S., Truskett, T.M., Garde, S.: Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover. Proc. Natl. Acad. Sci. USA 102(27), 9475–9480 (2005)

    Article  ADS  Google Scholar 

  7. Stewart, M.C., Evans, R.: Wetting and drying at a curved substrate: Long-ranged forces. Phys. Rev. E 71(1), 011602 (2005)

    Article  ADS  Google Scholar 

  8. Varilly, P., Patel, A.J., Chandler, D.: An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys. 134, 074109 (2011)

    Article  ADS  Google Scholar 

  9. Stillinger, F.H.: Structure in aqueous solutions of nonpolar solutes from the standpoint of Scaled-Particle theory. J. Solution Chem. 2, 141 (1973)

    Article  Google Scholar 

  10. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    Article  ADS  Google Scholar 

  11. Graziano, G.: Scaled particle theory study of the length scale dependence of cavity thermodynamics in different liquids. J. Phys. Chem. B 110(23), 11421–11426 (2006)

    Article  Google Scholar 

  12. Jamadagni, S.N., Godawat, R., Garde, S.: Hydrophobicity of proteins and interfaces: Insights from density fluctuations. Annu. Rev. Chem. Biomol. Eng. 2, 147–171 (2011)

    Article  Google Scholar 

  13. Wu, J.Z.: Solvation of a spherical cavity in simple liquids: Interpolating between the limits. J. Phys. Chem. B 113(19), 6813–6818 (2009)

    Article  Google Scholar 

  14. Huang, D.M., Geissler, P.L., Chandler, D.: Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105(28), 6704–6709 (2001)

    Article  Google Scholar 

  15. Huang, D.M., Chandler, D.: Cavity formation and the drying transition in the Lennard-Jones fluid. Phys. Rev. E 61(2), 1501–1506 (2000)

    Article  ADS  Google Scholar 

  16. Lynden-Bell, R.M., Giovambattista, N., Debenedetti, P.G., Head-Gordon, T., Rossky, P.J.: Hydrogen bond strength and network structure effects on hydration of non-polar molecules. Phys. Chem. Chem. Phys. 13(7), 2748–2757 (2011)

    Article  Google Scholar 

  17. Ashbaugh, H.S.: Blowing bubbles in Lennard-Jonesium along the saturation curve. J. Chem. Phys. 130(20), 240517 (2009)

    Article  Google Scholar 

  18. Chothia, C.: Hydrophobic bonding and accessible surface-area in proteins. Nature 248(5446), 338–339 (1974)

    Article  ADS  Google Scholar 

  19. Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319(6050), 199–203 (1986)

    Article  ADS  Google Scholar 

  20. Wagoner, J.A., Baker, N.A.: Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA 103(22), 8331–8336 (2006)

    Article  ADS  Google Scholar 

  21. Sharp, K.A., Nicholls, A., Fine, R.F., Honig, B.: Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252(5002), 106–109 (1991)

    Article  ADS  Google Scholar 

  22. Wang, J.H., Bratko, D., Luzar, A.: Probing surface tension additivity on chemically heterogeneous surfaces: A molecular approach. Proc. Natl. Acad. Sci. 108, 6374–6379 (2011)

    Article  ADS  Google Scholar 

  23. Dong, F., Wagoner, J.A., Baker, N.A.: Assessing the performance of implicit solvation models at a nucleic acid surface. Phys. Chem. Chem. Phys. 10(32), 4889–4902 (2008)

    Article  Google Scholar 

  24. Fennell, C.J., Kehoe, C.W., Dill, K.A.: Modeling aqueous solvation with semi-explicit assembly. Proc. Natl. Acad. Sci. USA 108(8), 3234–3239 (2011)

    Article  ADS  Google Scholar 

  25. Hummer, G., Pratt, L.R., Garcia, A.E.: Ion sizes and finite-size corrections for ionic-solvation free energies. J. Chem. Phys. 107(21), 9275–9277 (1997)

    Article  ADS  Google Scholar 

  26. Rajamani, S., Ghosh, T., Garde, S.: Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior. J. Chem. Phys. 120(9), 4457–4466 (2004)

    Article  ADS  Google Scholar 

  27. Torrie, G.M., Patey, G.N.: Molecular-solvent model for an electrical double-layer—Asymmetric solvent effects. J. Phys. Chem. 97(49), 12909–12918 (1993)

    Article  Google Scholar 

  28. Torrie, G.M., Kusalik, P.G., Patey, G.N.: Molecular-solvent model for an electrical double-layer—Reference hypernetted-chain (rhnc) results for solvent structure at a charged surface. J. Chem. Phys. 88(12), 7826–7840 (1988)

    Article  ADS  Google Scholar 

  29. Wu, J.Z., Bratko, D., Prausnitz, J.M.: Interaction between like-charged colloidal spheres in electrolyte solutions. Proc. Natl. Acad. Sci. USA 95(26), 15169–15172 (1998)

    Article  ADS  Google Scholar 

  30. Bratko, D., Luzar, A., Chen, S.H.: Electrostatic model for protein reverse micelle complexation. J. Chem. Phys. 89(1), 545–550 (1988)

    Article  ADS  Google Scholar 

  31. Lynden-Bell, R.M., Rasiash, J.C.: From hydrophobic to hydrophilic behavior: A simulation study of solvation entropy and free energy of simple solutes. J. Chem. Phys. 107(6), 1981–1991 (1997)

    Article  ADS  Google Scholar 

  32. Dzubiella, J., Hansen, J.P.: Competition of hydrophobic and Coulombic interactions between nanosized solutes. J. Chem. Phys. 121(11), 5514–5530 (2004)

    Article  ADS  Google Scholar 

  33. Born, M.: Volumes and heats of hydration of ions. Z. Phys. 1, 45–48 (1920)

    Article  ADS  Google Scholar 

  34. Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112(16), 6127–6129 (1990)

    Article  Google Scholar 

  35. Qiu, D., Shenkin, P.S., Hollinger, F.P., Still, W.C.: The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J. Phys. Chem. A 101(16), 3005–3014 (1997)

    Article  Google Scholar 

  36. McQuarrie, D.A., Simon, J.D.: Physical Chemistry: A Molecular Approach. University Science Books, Sausalito (1997)

    MATH  Google Scholar 

  37. LyndenBell, R.M., Rasaiah, J.C.: From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes. J. Chem. Phys. 107(6), 1981–1991 (1997)

    Article  ADS  Google Scholar 

  38. Mucha, M., Frigato, T., Levering, L.M., Allen, H.C., Tobias, D.J., Dang, L.X., Jungwirth, P.: Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J. Phys. Chem. B 109(16), 7617–7623 (2005)

    Article  Google Scholar 

  39. Wennerstrom, H., Jonsson, B., Linse, P.: The cell model for polyelectrolyte systems. Exact statistical mechanical relations, Monte Carlo simulations, and the Poisson-Boltzmann approximation. J. Chem. Phys. 76(9), 4665–4670 (1982)

    Article  ADS  Google Scholar 

  40. Bratko, D., Lindman, B.: On counterion self-diffusion in micellar solutions. J. Phys. Chem. 89(8), 1437–1440 (1985)

    Article  Google Scholar 

  41. Lowen, H., Hansen, J.P., Madden, P.A.: Nonlinear counterion screening in colloidal suspensions. J. Chem. Phys. 98(4), 3275–3289 (1993)

    Article  ADS  Google Scholar 

  42. Frenkel, D., Smit, B.: Understanding Molecular Simulation, from Algorithms to Applications. Academic Press, San Diego (2002)

    Google Scholar 

  43. Bratko, D., Dolar, D.: Ellipsoidal model of poly-electrolyte solutions. J. Chem. Phys. 80(11), 5782–5789 (1984)

    Article  ADS  Google Scholar 

  44. Ochterski, J.W.: Thermochemistry in Gaussian. Gaussian, Wallingford (2000)

    Google Scholar 

  45. Reif, M., Huenenberger, P.: Single ion Solvation. Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities. RSC Publishing, Zurich (2011)

    Google Scholar 

  46. Joung, I.S., Cheatham, T.E.: Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B 113(40), 13279–13290 (2009)

    Article  Google Scholar 

  47. Linse, P.: Structure, phase stability, and thermodynamics in charged colloidal solutions. J. Chem. Phys. 113(10), 4359–4373 (2000)

    Article  ADS  Google Scholar 

  48. Rouzina, I., Bloomfield, V.A.: Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud. J. Phys. Chem. 100(23), 9977–9989 (1996)

    Article  Google Scholar 

  49. Athawale, M.V., Jamadagni, S.N., Garde, S.: How hydrophobic hydration responds to solute size and attractions: Theory and simulations. J. Chem. Phys. 131(11), 115102 (2009)

    Article  ADS  Google Scholar 

  50. Zangi, R., Berne, B.J.: Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. J. Phys. Chem. B 110(45), 22736–22741 (2006)

    Article  Google Scholar 

  51. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91(24), 6269–6271 (1987)

    Article  Google Scholar 

  52. Smith, W., Forester, T.R.: DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14(3), 136–141 (1996)

    Article  Google Scholar 

  53. Spohr, E.: Molecular simulation of the electrochemical double layer. Electrochim. Acta 44(11), 1697–1705 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dusan Bratko or Alenka Luzar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Bratko, D. & Luzar, A. Length-Scale Dependence of Hydration Free Energy: Effect of Solute Charge. J Stat Phys 145, 253–264 (2011). https://doi.org/10.1007/s10955-011-0337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0337-1

Keywords

Navigation