Skip to main content
Log in

Duality for Stochastic Models of Transport

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study three classes of continuous time Markov processes (inclusion process, exclusion process, independent walkers) and a family of interacting diffusions (Brownian energy process). For each model we define a boundary driven process which is obtained by placing the system in contact with proper reservoirs, working at different particle densities or different temperatures. We show that all the models are exactly solvable by duality, using a dual process with absorbing boundaries. The solution does also apply to the so-called thermalization limit in which particles or energy is instantaneously redistributed among sites.

The results shows that duality is a versatile tool for analyzing stochastic models of transport, while the analysis in the literature has been so far limited to particular instances. Long-range correlations naturally emerge as a result of the interaction of dual particles at the microscopic level and the explicit computations of covariances match, in the scaling limit, the predictions of the macroscopic fluctuation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernardin, C., Olla, S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys. 121, 271–289 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geom. 6(3), 231–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertini, L., Gabrielli, D., Lebowitz, J.: Large deviations for a stochastic model of heat flow. J. Stat. Phys. 121(5/6), 843–885 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Non equilibrium current fluctuations in stochastic lattice gases. J. Stat. Phys. 123, 237–276 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. 37(4), 611–643 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech. P07014 (2007)

  7. Bodineau, T., Derrida, B.: Current fluctuations in nonequilibrium diffusive systems: an additivity principle. Phys. Rev. Lett. 92(18), 180601 (2004)

    Article  ADS  Google Scholar 

  8. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP (2013, preprint). http://arxiv.org/abs/1207.5035

  9. Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Dualities in population genetics: a fresh look with new dualities (2013, preprint). http://arxiv.org/abs/1302.3206

  10. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. P07023 (2007)

  11. Derrida, B., Evans, M.R.: Exact correlation functions in an asymmetric exclusion model with open boundaries. J. Phys. I 3, 311–322 (1993)

    Article  MathSciNet  Google Scholar 

  12. Derrida, B., Gerschenfeld, A.: Current fluctuations in one dimensional diffusive system with a step initial profile. J. Stat. Phys. 137(5–6), 978–1000 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107(3/4), 599–634 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Derrida, B., Lebowitz, J.L., Speer, E.R.: Entropy of open lattice systems. J. Stat. Phys. 126(4/5), 1083–1108 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Dolgopyat, D., Liverani, C.: Energy transfer in a fast-slow Hamiltonian system. Commun. Math. Phys. 308(1), 201–225 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    Article  ADS  Google Scholar 

  18. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Giardinà, C., Kurchan, J.: Fourier law in a momentum conserving chain. J. Stat. Mech. P05009 (2005)

  20. Giardinà, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48, 033301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Giardinà, C., Redig, F., Vafayi, K.: Correlation inequalities for interacting particle systems with duality. J. Stat. Phys. 141(2), 242–263 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Giardinà, C., Kurchan, J., Lecomte, V., Tailleur, J.: Simulating rare events in dynamical processes. J. Stat. Phys. 145(4), 787–811 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Grosskinsky, S., Redig, F., Vafayi, K.: Condensation in the inclusion process and related models. J. Stat. Phys. 142(5), 952–974 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Jansen, S., Kurt, N.: On the notion(s) of duality for Markov processes (preprint). arXiv:1210.7193

  26. Keisling, J.D.: An ergodic theorem for the symmetric generalized exclusion process. Markov Process. Relat. Fields 4, 351–379 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27(1), 65–74 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  28. Kurchan, J.: The fluctuation theorem for stochastic dynamics. J. Phys. A, Math. Gen. 31, 3719 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Lecomte, V., Appert-Rolland, C., van Wijland, F.: Thermodynamic formalism for systems with Markov dynamics. J. Stat. Phys. 127, 51–106 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Levine, E., Mukamel, D., Schütz, G.M.: Zero range process with open boundaries. J. Stat. Phys. 120, 759–778 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  32. Schütz, G., Sandow, S.: Non-Abelian symmetries of stochastic processes: derivation of correlation functions for random-vertex models and disordered-interacting-particle systems. Phys. Rev. E 49, 2726 (1994)

    Article  ADS  Google Scholar 

  33. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A, Math. Gen. 16, 4275–4291 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Bernard Derrida, with whom we discussed some of the topics in this work. In particular we own to him the results of Sect. 7 for the comparison to macroscopic fluctuation theory.

We acknowledge financial support from the by the Italian Research Funding Agency (MIUR) through FIRB project “Stochastic processes in interacting particle systems: duality, metastability and their applications”, grant n. RBFR10N90W and the Fondazione Cassa di Risparmio Modena through the International Research 2010 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Giardinà.

Appendix: Equations for the two points correlations

Appendix: Equations for the two points correlations

We provide the linear systems that must be satisfied by the two points correlation functions in the steady state, i.e. X i, =〈η i η 〉 with 1≤iL. In the following, equations (1), (2), (3) are obtained by letting act the generator on a couple of sites at distance larger or equal than two, equations (4), (5), (6) are derived from nearest-neighbouring sites, equations (7), (8), (9) correspond to the diagonal, equation (10) is obtained from the couple (1,L).

Inclusion/Exclusion Walkers: the equations for the inclusion walkers \(\operatorname{SIP}(2k)\) and for the exclusion walkers \(\operatorname{SEP}(2j)\) are similar, with some relevant change of signs in the two cases; therefore we write them together. With the convention to use upper symbol for inclusion and lower symbol for exclusion in ± and ∓ and with the further convention that h=k for \(\operatorname{SIP}(2k)\) and h=j for \(\operatorname{SEP}(2j)\), the equations read

(8.1)

Brownian Energy Process \(\operatorname{BEP}(2k)\): the equations for the \(\operatorname{BEP}(2k)\) read

(8.2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carinci, G., Giardinà, C., Giberti, C. et al. Duality for Stochastic Models of Transport. J Stat Phys 152, 657–697 (2013). https://doi.org/10.1007/s10955-013-0786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0786-9

Keywords

Navigation