Skip to main content
Log in

Asymptotic Analysis of the Spatially Homogeneous Boltzmann Equation: Grazing Collisions Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the present work, we consider the asymptotic problem of the spatially homogeneous Boltzmann equation when almost all collisions are grazing, that is, the deviation angle \(\theta \) of the collision is limited near zero (i.e., \(\theta \le \epsilon \)). We show that by taking the proper scaling to the cross-section which was used in [37], that is, assuming

$$\begin{aligned} B^\epsilon ( v-v_{*},\sigma )=2(1-s)|v-v_*|^{\gamma }\epsilon ^{-3}\sin ^{-1}\theta \left( \frac{\theta }{\epsilon }\right) ^{-1-2s}\mathrm {1}_{\theta \le \epsilon }, \end{aligned}$$

where \(\theta = \langle \theta ={\frac{\upsilon -\upsilon _*}{|\upsilon -\upsilon _*|}}.\sigma \rangle , \) the solution \(f^\epsilon \) of the Boltzmann equation with initial data \(f_0\) can be globally or locally expanded in some weighted Sobolev space as

$$\begin{aligned} f^\epsilon = f+ O(\epsilon ), \end{aligned}$$

where the function \(f\) is the solution of Landau equation, which is associated with the grazing collisions limit of Boltzmann equation, with the same initial data \(f_0\). This gives the rigorous justification of the Landau approximation in the spatially homogeneous case. In particular, if taking \(\gamma =-3\) and \(s=1-\epsilon \) in the cross-section \(B^\epsilon \), we show that the above asymptotic formula still holds and in this case \(f\) is the solution of Landau equation with the Coulomb potential. Going further, we revisit the well-posedness problem of the Boltzmann equation in the limiting process. We show there exists a common lifespan such that the uniform estimates of high regularities hold for each solution \(f^\epsilon \). Thanks to the weak convergence results on the grazing collisions limit in [37], in other words, we establish a unified framework to establish the well-posedness results for both Boltzmann and Landau equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsenev, A.A., Buryak, O.E.: On the connection between a solution of the Boltzmann equation and a solution of the Landau–Fokker–Planck equation. Math. USSR Sbornik 69(2), 465–478 (1991)

    Article  MathSciNet  Google Scholar 

  2. Alexandre, R.: Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities \(0<\mu <1\). Indiana Univ. Math. J. 55(6), 1975–2021 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alexandre, R., He, L.: Integral estimates for a linear singular operator linked with the Boltzmann operator. II. High singularities \(1 \le \mu < 2\). Kinet. Relat. Models 1(4), 491–513 (2008)

  5. Alexandre, R., Herau, F., Li, W.X.: Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff. arxiv 1212.4632

  6. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularizing effect and local existence for non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198, 39–123 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513–581 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space I: global existence for soft potential. J. Funct. Anal. 262(3), 915–1010 (2012)

    Google Scholar 

  9. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space II: global existence for hard potential. Anal. Appl. (Singap.) 9(2), 113–134 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Smoothing effect of weak solutions to the spatially homogeneous Boltzmann equation. Kyoto J. Math. 52(3), 433–463 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math. 55(1), 30–70 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 61–95 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  13. Chen, Y., He, L.: Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case. Arch. Ration. Mech. Anal. 201(2), 501–548 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, Y., He, L.: Smoothing estimates for Boltzmann equation with full-range interactions: spatially inhomogeneous case. Arch. Ration. Mech. Anal. 203(2), 343–377 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cianchi, A.: Some results in the theory of Orlicz spaces and application to variational problems. Nonlinear analysis, function spaces and applications. In: Proceedings of the Spring School held in Prague, May 31–June 6, 1998. vol. 6, pp. 50–92. Czech Academy of Sciences, Mathematical Institute, Praha (1999)

  16. Degond, P., Lucquin-Desreux, B.: The Fokker–Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2(2), 167–182 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Desvillettes, L.: On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Theory Stat. Phys. 21(3), 259–276 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Desvillettes, L., Mouhot, C.: Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch. Ration. Mech. Anal. 193(2), 227–253 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Desvillettes, L., Wennberg, B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Commun. Partial Differ. Equ. 29(1–2), 133–155 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials, part 1: existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25(1–2), 179–259 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fournier, N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Stat. Phys. 125, 927–946 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Fournier, N.: Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys. 299(3), 765–782 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Fournier, N., Mouhot, C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Commun. Math. Phys. 289, 803–824 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Fournier, N., Guerin, H.: On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity. J. Stat. Phys 131, 949–781 (2008)

    Article  MathSciNet  Google Scholar 

  25. Fournier, N., Guerin, H.: Well-posedness of the spatially homogeneous Landau equation for soft potentials. J. Funct. Anal. 256(9), 2542–2560 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Goudon, T.: On Boltzmann equations and Fokker–Planck asymptotics: influence of grazing collisions. J. Stat. Phys. 89(3–4), 751–776 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Gressman, P.T., Strain, R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gressman, P.T., Strain, R.M.: Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv. Math. 227(6), 2349–2384 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Guerin, H.: Pointwise convergence of Boltzmann solutions for grazing collisions in a Maxwell gas via a probabilistic interpretation. ESAIM Probab. Stat. 8, 36–55 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. He, L.: Well-Posedness of spatially homogeneous Boltzmann equation with full-range interaction. Commun. Math. Phys. 312(2), 447–476 (2012)

    Article  ADS  MATH  Google Scholar 

  31. He, L., Yang, X.: Well-posedness and asymptotics of grazing collisions limit of Boltzmann equation with Coulomb interaction (under review)

  32. Huo, Z., Morimoto, Y., Ukai, S., Yang, T.: Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinet. Relat. Models 1(3), 453–489 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lerner, N., Morimoto, Y., Pravda-Starov, K., Xu, C.J.: Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinet. Relat. Models 3(6), 625–648, 453–489 (2013)

    Google Scholar 

  34. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Perg. Press, Oxford (1981)

    Google Scholar 

  35. Lu, X., Mouhot, C.: On measure solutions of the Boltzmann equation, part I: moment production and stability estimates. J. Differ. Equ. 252(4), 3305–3363 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94, 619–637 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Villani, C.: On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273–307 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is supported by NSF of China under Grant 11001149 and 11171173 and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbing He.

Appendix

Appendix

In this section, we shall give the error estimates between the Boltzmann collision operator \( Q^\epsilon (g,h)\) and the Landau operator \(Q_L(g,h)\). We have

Lemma 7.1

Suppose that \(g\) and \(h\) are Schwartz functions. If \(\psi \in L^2\), one has

$$\begin{aligned} \bigg |\frac{1}{\epsilon }\langle Q^\epsilon (g,h)-Q_L(g,h), \langle \cdot \rangle ^l\psi \rangle _v\bigg |\lesssim \Vert g\Vert _{H^3_{\gamma +10+l}}\Vert h\Vert _{H^5_{\gamma +10+l}}\Vert \psi \Vert _{L^2}, \end{aligned}$$

or

$$\begin{aligned} \bigg |\frac{1}{\epsilon }\langle Q^\epsilon (g,h)-Q_L(g,h), \langle \cdot \rangle ^l\psi \rangle _v\bigg |\lesssim \Vert g\Vert _{H^5_{\gamma +10+l}}\Vert h\Vert _{H^3_{\gamma +10+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

If \(\psi \) verifies

$$\begin{aligned} |\psi (v)|\le \langle v\rangle ^l, \end{aligned}$$
(81)

one has

$$\begin{aligned} \bigg |\frac{1}{\epsilon }\langle Q^\epsilon (g,h)-Q_L(g,h), \psi \rangle _v\bigg |\lesssim \Vert g\Vert _{H^3_{\gamma +12+l}}\Vert h\Vert _{H^5_{\gamma +10+l}}. \end{aligned}$$

Remark 7.1

As a direct consequence, we have

$$\begin{aligned} \bigg |\frac{1}{\epsilon }\langle Q^\epsilon (f,f)-Q_L(f,f), (sgn F^\epsilon _R)\langle \cdot \rangle ^l\rangle _v\bigg |\lesssim \Vert f\Vert _{H^3_{\gamma +12+l}}\Vert f\Vert _{H^5_{\gamma +10+l}}, \end{aligned}$$

and for \(|\beta |\ge 3\),

$$\begin{aligned} \bigg |\frac{1}{\epsilon }\langle \partial _v^\beta \big [Q^\epsilon (f,f)-Q_L(f,f)\big ], \langle \cdot \rangle ^l\psi \rangle _v\bigg |\lesssim \Vert f\Vert ^2_{H^{|\beta |+3}_{\gamma +10+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

Proof

We shall borrow the idea of [17] to give the estimates. Introduce an orthogonal basis of \({\mathbb {R}}^3\):

$$\begin{aligned} \big (\frac{v-v_*}{|v-v_*|}, h^1_{v,v_*}, h^2_{v,v_*}\big ). \end{aligned}$$

Then one has

$$\begin{aligned} \sigma = \frac{v-v_*}{|v-v_*|}\cos \theta + (\cos \varphi h^1_{v,v_*}+\sin \varphi h^2_{v,v_*})\sin \theta . \end{aligned}$$

By change of variable: \(\theta \rightarrow \epsilon \chi \), we have

$$\begin{aligned} v'=v+\frac{1}{2}A^\epsilon ,\quad v_{*}^{\prime }=v_*-\frac{1}{2}A^\epsilon , \end{aligned}$$

with

$$\begin{aligned} A^\epsilon =-(v-v_*)(1-\cos (\epsilon \chi ))+|v-v_*|(\cos \varphi h^1_{v,v_*}+\sin \varphi h^2_{v,v_*})\sin (\epsilon \chi ). \end{aligned}$$

The Boltzmann collision operator \(Q^\epsilon \) can be rewritten as

$$\begin{aligned} Q^\epsilon (g,h)&= \frac{1}{\epsilon ^2}\int \limits _{{\mathbb {R}}^3}\int \limits _0^\frac{\pi }{\epsilon }\int \limits _0^{2\pi } \big [g(v_*-\frac{1}{2}A^\epsilon )h(v+\frac{1}{2}A^\epsilon )-g(v_*)h(v)\big ]\Psi (\chi )|v-v_*|^\gamma d\varphi d\chi dv_*. \end{aligned}$$

Here we set

$$\begin{aligned} \Psi (\chi )\mathop {=}\limits ^{\mathrm{def}}K\chi ^{-1-2s}\zeta (\chi ) \quad \text{ if }\quad \gamma >-3, \end{aligned}$$

and

$$\begin{aligned} \Psi (\chi )\mathop {=}\limits ^{\mathrm{def}}\epsilon K\chi ^{-3+2\epsilon }\zeta (\chi ) \quad \text{ if }\quad \gamma =-3. \end{aligned}$$

Then it gives

$$\begin{aligned} Q^\epsilon (g,h)\!=\!\frac{1}{\epsilon ^2}\int \limits _{{\mathbb {R}}^3}\int \limits _0^\frac{\pi }{2}\int \limits _0^{2\pi } \left[ \!g\left( \!v_*-\frac{1}{2}A^\epsilon \!\right) h\left( \!v\!+\!\frac{1}{2}A^\epsilon \!\right) \!-\!g(v_*)h(v)\!\right] \Psi (\chi )|v\!-\!v_*|^\gamma d\varphi d\chi dv_*. \end{aligned}$$

Note that

$$\begin{aligned} g(v_*-\frac{1}{2}A^\epsilon )=g(v_*)-\frac{1}{2}A^\epsilon \nabla _{v_*} g(v_*)+\frac{1}{8}A^\epsilon \otimes A^\epsilon :D^2g(v_*)+r^1(v_*, v) \end{aligned}$$

and

$$\begin{aligned} h(v+\frac{1}{2}A^\epsilon )=h(v)+\frac{1}{2}A^\epsilon \nabla _{v} h(v)+\frac{1}{8}A^\epsilon \otimes A^\epsilon :D^2h(v)+r^2(v_*, v), \end{aligned}$$

where

$$\begin{aligned} |r^1(v_*, v)|&\lesssim |A^\epsilon |^3\int \limits _0^1 |D^3 g|(v_*+\kappa (v_{*}^{\prime }-v_*))d\kappa ,\\ |r^2(v_*, v)|&\lesssim |A^\epsilon |^3\int \limits _0^1 |D^3 h|(v +\iota (v'-v))d\iota . \end{aligned}$$

Then we arrive at

$$\begin{aligned} Q^\epsilon (g,h)&= \frac{1}{\epsilon ^2}\int \limits _{{\mathbb {R}}^3}\int \limits _0^\frac{\pi }{2}\int \limits _0^{2\pi } \big [\frac{1}{2}A^\epsilon (\nabla _{v}-\nabla _{v_*})(g(v_*)h(v))+\frac{1}{8}A^\epsilon \otimes A^\epsilon :\\&\qquad (\nabla -\nabla _{v_*})^2(g(v_*)h(v))+R^1(v,v_*)\big ]\Psi (\chi )|v-v_*|^\gamma d\varphi d\chi dv_*, \end{aligned}$$

where

$$\begin{aligned} R^1(v,v_*)&= r^1(v_*, v)\big (h(v)+\frac{1}{2}A^\epsilon \nabla h(v)+\frac{1}{8}A^\epsilon \otimes A^\epsilon :D^2h(v)+r^2(v_*, v) \big )\\&+\frac{1}{8}A^\epsilon \otimes A^\epsilon :D^2g(v_*)\left( \frac{1}{2}A^\epsilon \nabla h(v)+\frac{1}{8}A^\epsilon \otimes A^\epsilon :D^2h(v)+r^2(v_*, v) \right) \\&-\frac{1}{2}A^\epsilon \nabla _{v_*} g(v_*)\left( \frac{1}{8}A^\epsilon \otimes A^\epsilon :D^2h(v)+r^2(v_*, v) \right) +g(v_*)r^2(v_*, v). \end{aligned}$$

Suppose that

$$\begin{aligned}&T^\epsilon (v-v_*) \mathop {=}\limits ^{\mathrm{def}}\int \limits _{\chi ,\varphi } \frac{1}{2}A^\epsilon \Psi (\chi )|v-v_*|^\gamma d\varphi d\chi ,\\&\text{ and } \quad U^\epsilon (v-v_*) \mathop {=}\limits ^{\mathrm{def}}\int \limits _{\chi ,\varphi } \frac{1}{8}A^\epsilon \otimes A^\epsilon \Psi (\chi )|v-v_*|^\gamma d\varphi d\chi , \end{aligned}$$

then we have

$$\begin{aligned}&Q^\epsilon (g,h)=\frac{1}{\epsilon ^2}\int \limits _{{\mathbb {R}}^3}\big [T^\epsilon (v-v_*)(\nabla _{v}-\nabla _{v_*})(g(v_*)h(v))+U^\epsilon (v-v_*): \nonumber \\&\quad (\nabla -\nabla _{v_*})^2(g(v_*)h(v))dv_*+\frac{1}{\epsilon ^2}\int \limits _{{\mathbb {R}}^3}\int \limits _0^\frac{\pi }{2}\int \limits _0^{2\pi } R^1(v,v_*) \Psi (\chi )|v-v_*|^\gamma d\varphi d\chi dv_*.\qquad \end{aligned}$$
(82)

Observe that

$$\begin{aligned} T^\epsilon (v-v_*)=-\epsilon ^24\Lambda |v-v_*|^\gamma (v-v_*)+R^2(v,v_*), \end{aligned}$$

with

$$\begin{aligned} R^2(v,v_*)=-\pi \bigg [\int \limits _0^\frac{\pi }{2} (1-\cos (\epsilon \chi )-\frac{1}{2}(\epsilon \chi )^2)\Psi (\chi )d\chi \bigg ]|v-v_*|^\gamma (v-v_*), \end{aligned}$$

if \(\gamma >-3\) and

$$\begin{aligned} R^2(v,v_*)&= -\pi \bigg [\int \limits _0^\frac{\pi }{2} (1-\cos (\epsilon \chi )-\frac{1}{2}(\epsilon \chi )^2)\Psi (\chi )d\chi \bigg ]|v-v_*|^\gamma (v-v_*)\\&+\,\frac{\pi }{2}\epsilon ^2|v-v_*|^\gamma (v-v_*)\big (\int \limits _0^\frac{\pi }{2} \Psi (\chi )\chi ^2d\chi -\frac{1}{2}K\big ), \end{aligned}$$

if \(\gamma =-3\).

We also notice that

$$\begin{aligned} U^\epsilon (v-v_*)=\epsilon ^2a(v-v_*)+R^3(v,v_*), \end{aligned}$$
(83)

where

$$\begin{aligned} a(v-v_*)= \Lambda |v-v_*|^\gamma \big [|v-v_*|^2Id-(v-v_*)\otimes (v-v_*)\big ] \end{aligned}$$

and

$$\begin{aligned} R^3(v,v_*)&= |v-v_*|^\gamma (v-v_*)\otimes (v-v_*)\int \limits _{0}^{\frac{\pi }{2}}[1-\cos (\epsilon \chi )]^2\Psi (\chi )d\chi \\&+\frac{\pi }{8}|v-v_*|^\gamma \big [|v-v_*|^2Id-(v-v_*)\otimes (v-v_*)\big ]\\&\times \int \limits _{0}^{\frac{\pi }{2}}[ \sin ^2(\epsilon \chi )-(\epsilon \chi )^2]\Psi (\chi )d\chi , \end{aligned}$$

if \(\gamma >-3\) and

$$\begin{aligned} R^3(v,v_*)&= |v-v_*|^\gamma (v-v_*)\otimes (v-v_*)\int \limits _{0}^{\frac{\pi }{2}}[1-\cos (\epsilon \chi )]^2\Psi (\chi )d\chi \\&+\,\frac{\pi }{8}|v-v_*|^\gamma \big [|v-v_*|^2Id-(v-v_*)\otimes (v-v_*)\big ]\\&\times \,\bigg [\int \limits _{0}^{\frac{\pi }{2}}\big (\sin ^2(\epsilon \chi )-(\epsilon \chi )^2\big )\Psi (\chi )d\chi +\epsilon ^2\big (\int \limits _0^\frac{\pi }{2} \Psi (\chi )\chi ^2d\chi -\frac{1}{2}K\big )\bigg ], \end{aligned}$$

if \(\gamma =-3\).

Thanks to (82) and the fact

$$\begin{aligned} (\nabla -\nabla _{v_*})\cdot U^\epsilon (v,v_*)&= -4\epsilon ^2\Lambda |v-v_*|^\gamma (v-v_*)+(\nabla -\nabla _{v_*})R^3(v,v_*)\\&= T^\epsilon (v,v_*)-R^2(v,v_*)+(\nabla -\nabla _{v_*})R^3(v,v_*), \end{aligned}$$

we have

$$\begin{aligned} Q^\epsilon (g,h)&= \frac{1}{\epsilon ^2}\int \limits _{v_*} (\nabla -\nabla _{v_*})\cdot \big [U^\epsilon (v,v_*)(\nabla -\nabla _{v_*})(g_*h)\big ]dv_*\\&+\,\frac{1}{\epsilon ^2}\int \limits _{v_*}(\nabla -\nabla _{v_*})(g_*h) \cdot \big (-(\nabla -\nabla _{v_*})R^3(v,v_*)+R^2(v,v_*)\big )dv_*\\&+\,\frac{1}{\epsilon ^2}\int \limits _{v_*,\chi ,\varphi } R^1(v,v_*)\Psi (\chi )|v-v_*|^\gamma d\chi d\varphi dv_*. \end{aligned}$$

Noticing (83), we arrive at

$$\begin{aligned} \frac{1}{\epsilon }\big (Q^\epsilon (g,h)-Q_L(g,h)\big )&= \frac{1}{\epsilon ^3}\int \limits _{v_*} R^3(v,v_*):\big [(\nabla ^2-\nabla \nabla _{v_*}) (g_*h)\big ]dv_*\\&+\,\frac{1}{\epsilon ^3}\int \limits _{v_*}(\nabla -\nabla _{v_*})(g_*h) \cdot \big (\nabla _{v_*}R^3(v,v_*)+R^2(v,v_*)\big )dv_*\\&+\,\frac{1}{\epsilon ^3}\int \limits _{v_*,\chi ,\varphi } R^1(v,v_*)\Psi (\chi )|v-v_*|^\gamma d\chi d\varphi dv_*. \end{aligned}$$

We denote the righthand side by \(E_1,E_2\) and \(E_3\). Note that

$$\begin{aligned} |R^3(v,v_*)|\lesssim \epsilon ^3 |v-v_*|^{\gamma +2} \end{aligned}$$

and

$$\begin{aligned} |\nabla _{v_*} R^3(v,v_*)|+|R^2(v,v_*)|\lesssim \epsilon ^3 |v-v_*|^{\gamma +1}, \end{aligned}$$

one has that

$$\begin{aligned} |\langle E_1, \langle \cdot \rangle ^l\psi \rangle |\lesssim \Vert g\Vert _{H^1_{(\gamma +2)^++2}}\Vert h\Vert _{H^2_{(\gamma +2)^++l}}\Vert \psi \Vert _{L^2} \end{aligned}$$

and

$$\begin{aligned} |\langle E_2, \langle \cdot \rangle ^l \psi \rangle |\lesssim (\Vert g\Vert _{H^1_{(\gamma +1)^++2}}+\Vert g\Vert _{H^2})\Vert h\Vert _{H^2_{(\gamma +1)^++l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

When \(\psi \) verifies the condition (81), we have

$$\begin{aligned} |\langle E_1, \psi \rangle |\lesssim \Vert g\Vert _{H^1_{(\gamma +2)^++2}}\Vert h\Vert _{H^2_{(\gamma +2)^++l+2}} \end{aligned}$$

and

$$\begin{aligned} |\langle E_2, \psi \rangle |\lesssim \Vert g\Vert _{H^1_{(\gamma +1)^++2}}\Vert h\Vert _{H^2_{(\gamma +1)^++l+2}}. \end{aligned}$$

Next we shall give the estimate to \(E_3\). Due to the definition of \(R^1(v,v_*)\) and the fact \(|A^\epsilon |\lesssim \epsilon \chi |v-v_*|\), we obtain that

$$\begin{aligned} R^1(v,v_*)&\lesssim \sum _{|\beta _1|,|\beta _2|\le 2} (\epsilon \chi )^3|v-v_*|^3\langle v-v_*\rangle ^3 \bigg [|D^{\beta _1}_{v_*} g||D^{\beta _2}_{v} h|\\&+|D^{\beta _1}_{v_*} g|\int \limits _0^1|D^3h|(v+(v'-v)\iota )d\iota + |D^{\beta _2}_{v} h|\int \limits _0^1|D^3g|(v_*+(v_{*}^{\prime }-v_*)\kappa )d\kappa \\&+ \int \limits _0^1\int \limits _0^1|D^3g|(v_*+(v_{*}^{\prime }-v_*)\kappa )|D^3h|(v+(v'-v)\iota )d\kappa d\iota \bigg ]\mathop {=}\limits ^{\mathrm{def}}\sum _iR^1_i. \end{aligned}$$

From which, we deduce that \(E_3\) can be bounded by the sum of \(E_3^i\) with \(i=1,2,3,4\) defined by

$$\begin{aligned} E_3^i\mathop {=}\limits ^{\mathrm{def}}\frac{1}{\epsilon ^3}\int \limits _{v_*,\chi ,\varphi } R^1_i(v,v_*)\Psi (\chi )|v-v_*|^\gamma d\chi d\varphi dv_*. \end{aligned}$$

It is easy to check that

$$\begin{aligned} |\langle E^1_3, \langle \cdot \rangle ^l\psi \rangle |\lesssim \Vert g\Vert _{H^2_{\gamma +8}}\Vert h\Vert _{H^2_{\gamma +6+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

And when \(\psi \) verifies the condition (81), we have

$$\begin{aligned} |\langle E^1_3, \psi \rangle |\lesssim \Vert g\Vert _{H^2_{\gamma +8}}\Vert h\Vert _{H^2_{\gamma +8+l}}. \end{aligned}$$

Noting the fact

$$\begin{aligned} \langle v\rangle ^l\lesssim \langle v_*\rangle ^l+\langle v+(v'-v)\iota \rangle ^l, \end{aligned}$$

for \(\iota \in [0,1]\) and by the change of variable: \(v\rightarrow u= v+(v'-v)\iota \), one has

$$\begin{aligned} |\langle E^2_3,\langle \cdot \rangle ^l\psi \rangle |\lesssim \Vert g\Vert _{H^2_{\gamma +8+l}}\Vert h\Vert _{H^3_{\gamma +6+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

When \(\psi \) verifies the condition (81), we have

$$\begin{aligned} |\langle E^2_3, \psi \rangle |\lesssim \Vert g\Vert _{H^2_{\gamma +8+l}}\Vert h\Vert _{H^3_{\gamma +8+l}}. \end{aligned}$$

The similar result can be obtained for \(|\langle E^3_3,\langle \cdot \rangle ^l\psi \rangle |\), that is,

$$\begin{aligned} |\langle E^3_3,\langle \cdot \rangle ^l\psi \rangle |\lesssim \Vert g\Vert _{H^3_{\gamma +8+l}}\Vert h\Vert _{H^2_{\gamma +6+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

When \(\psi \) verifies the condition (81), we have

$$\begin{aligned} |\langle E^3_3, \psi \rangle |\lesssim \Vert g\Vert _{H^3_{\gamma +8}}\Vert h\Vert _{H^2_{\gamma +8+l}}. \end{aligned}$$

Set \(\iota (v)=v+(v'-v)\iota \) and \(\kappa (v_*)=v_*+(v_{*}^{\prime }-v_*)\kappa \). Then one has

$$\begin{aligned}&|\langle E_3^4, \langle \cdot \rangle ^l\psi \rangle |\\&\quad \lesssim \int \limits _{v,v_*,\chi ,\varphi ,\kappa ,\iota } \langle v-v_*\rangle ^{6+\gamma }|D^3g|(\kappa (v_*))|D^3h|(\iota (v))\langle v\rangle ^l|\psi (v)|\Psi (\chi )\chi ^3 d\chi d\varphi d\kappa d\iota dvdv_*\\&\quad \lesssim \Vert h\Vert _{H^5_{\gamma +8+l}}\int \limits _{v,u} \langle v-u\rangle ^{-2}|D^3g|(u)\langle u\rangle ^{\gamma +8+l}|\psi (v)| dvdu\\&\quad \lesssim \Vert g\Vert _{H^3_{\gamma +10+l}}\Vert h\Vert _{H^5_{\gamma +8+l}}\Vert \psi \Vert _{L^2}, \end{aligned}$$

where we use the change of variable: \(v_*\rightarrow u=\kappa (v_*)\) and the facts

$$\begin{aligned} \langle \kappa (v_*)\rangle ^{-1}\langle \iota (v)\rangle ^{-1} \lesssim \langle v-v_*\rangle ^{-1} \end{aligned}$$

and

$$\begin{aligned} \langle v\rangle \lesssim \langle \kappa (v_*)\rangle +\langle \iota (v)\rangle . \end{aligned}$$

We also note

$$\begin{aligned}&|\langle E_3^4, \langle \cdot \rangle ^l\psi \rangle |\\&\quad \lesssim \Vert g\Vert _{H^5_{\gamma +10+l}}\int \limits _{v,v_*,\chi ,\varphi ,\kappa ,\iota } \langle v-v_*\rangle ^{-4}(|D^3h|(\iota (v))\langle \iota (v)\rangle ^{\gamma +10+l})|\psi (v)|\Psi (\chi )\chi ^3d\chi d\varphi d\kappa d\iota dvdv_*\\&\quad \lesssim \Vert g\Vert _{H^5_{\gamma +10+l}}\Vert h\Vert _{H^3_{\gamma +10+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

The similar argument can be applied to the case that \(\psi \) verifies the condition (81). One has

$$\begin{aligned} |\langle E_3^4, \psi \rangle |&\lesssim \int \limits _{v,v_*,\chi ,\varphi ,\kappa ,\iota } \langle v-v_*\rangle ^{6+\gamma }|D^3g|(\kappa (v_*))|D^3h|(\iota (v))\langle \cdot \rangle ^l\Psi (\chi )\chi ^3d\chi d\varphi d\kappa d\iota dvdv_*\\&\lesssim \Vert h\Vert _{H^5_{\gamma +10+l}}\int \limits _{v,u} \langle v-u\rangle ^{-4}|D^3g|(u)\langle u\rangle ^{\gamma +10+l} dvdu\\&\lesssim \Vert g\Vert _{H^3_{\gamma +12+l}}\Vert h\Vert _{H^5_{\gamma +10+l}}. \end{aligned}$$

Collecting the above estimates, we may arrive at

$$\begin{aligned} |\langle E_3, \langle \cdot \rangle ^l\psi \rangle |\lesssim \Vert g\Vert _{H^3_{\gamma +10+l}}\Vert h\Vert _{H^5_{\gamma +10+l}}\Vert \psi \Vert _{L^2} \end{aligned}$$

or

$$\begin{aligned} |\langle E_3, \langle \cdot \rangle ^l\psi \rangle |\lesssim \Vert g\Vert _{H^5_{\gamma +10+l}}\Vert h\Vert _{H^3_{\gamma +10+l}}\Vert \psi \Vert _{L^2}. \end{aligned}$$

When \(\psi \) verifies the condition (81), one has

$$\begin{aligned} |\langle E_3, \psi \rangle |\lesssim \Vert g\Vert _{H^3_{\gamma +12+l}}\Vert h\Vert _{H^5_{\gamma +10+l}}. \end{aligned}$$

Patch together the estimates for \(E_1, E_2\) and \(E_3\), then we finally obtain the desired results. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L. Asymptotic Analysis of the Spatially Homogeneous Boltzmann Equation: Grazing Collisions Limit. J Stat Phys 155, 151–210 (2014). https://doi.org/10.1007/s10955-014-0932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0932-z

Keywords

Navigation