Skip to main content
Log in

On the Multi-dimensional Elephant Random Walk

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the asymptotic behavior of the multi-dimensional elephant random walk (MERW). It is a non-Markovian random walk which has a complete memory of its entire history. A wide range of literature is available on the one-dimensional ERW. Surprisingly, no references are available on the MERW. The goal of this paper is to fill the gap by extending the results on the one-dimensional ERW to the MERW. In the diffusive and critical regimes, we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the MERW. The asymptotic normality of the MERW, properly normalized, is also provided. In the superdiffusive regime, we prove the almost sure convergence as well as the mean square convergence of the MERW. All our analysis relies on asymptotic results for multi-dimensional martingales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baur, E., Bertoin, J.: Elephant random walks and their connection to Pólya-type urns. Phys. Rev. E 94, 052134 (2016)

    Article  ADS  Google Scholar 

  2. Boyer, D., Romo-Cruz, J.C.R.: Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion. Phys. Rev. E 90, 042136 (2014)

    Article  ADS  Google Scholar 

  3. Bercu, B.: On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications. Stoch. Process. Appl. 111(1), 157–173 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bercu, B.: A martingale approach for the elephant random walk. J. Phys. A 51, 015201 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Businger, S.: The shark random swim (Lévy flight with memory). J. Stat. Phys. 172, 701–717 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Coletti, C.F., Gava, R., Schütz, G.M.: Central limit theorem and related results for the elephant random walk. J. Math. Phys. 58, 053303 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Coletti, C.F., Gava, R., Schütz, G.M.: A strong invariance principle for the elephant random walk. J. Stat. Mech. 123207 (2017)

  8. Cressoni, J.C., Da Silva, M.A.A., Viswanathan, G.M.: Amnestically induced persistence in random walks. Phys. Rev. Lett. 98, 070603 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Cressoni, J.C., Viswanathan, G.M., Da Silva, M.A.A.: Exact solution of an anisotropic 2D random walk model with strong memory correlations. J. Phys. A 46, 505002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Silva, M.A.A., Cressoni, J.C., Schütz, G.M., Viswanathan, G.M., Trimper, S.: Non-Gaussian propagator for elephant random walks. Phys. Rev. E 88, 022115 (2013)

    Article  ADS  Google Scholar 

  11. Duflo, M.: Random Iterative Models. Applications of Mathematics, vol. 34. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  12. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press Inc., New York (1980)

    MATH  Google Scholar 

  13. Harbola, U., Kumar, N., Lindenberg, K.: Memory-induced anomalous dynamics in a minimal random walk model. Phys. Rev. E 90, 022136 (2014)

    Article  ADS  Google Scholar 

  14. Harris, R.: Random walkers with extreme value memory: modelling the peak-end rule. New J. Phys. 17, 053049 (2015)

    Article  ADS  Google Scholar 

  15. Janson, S.: Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110(2), 177–245 (2004)

    Article  MATH  ADS  Google Scholar 

  16. Kumar, N., Harbola, U., Lindenberg, K.: Memory-induced anomalous dynamics: emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model. Phys. Rev. E 82, 021101 (2010)

    Article  ADS  Google Scholar 

  17. Kürsten, R.: Random recursive trees and the elephant random walk. Phys. Rev. E 93, 032111 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lyu, J., Xin, J., Yu, Y.: Residual diffusivity in elephant random walk models with stops (2017). arXiv:1705.02711

  19. Paraan, F.N.C., Esguerra, J.P.: Exact moments in a continuous time random walk with complete memory of its history. Phys. Rev. E 74, 032101 (2006)

    Article  ADS  Google Scholar 

  20. Schütz, G.M., Trimper, S.: Elephants can always remember: exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E 70, 045101 (2004)

    Article  ADS  Google Scholar 

  21. Stout, W.F.: A martingale analogue of Kolmogorovs law of the itera3ed logarithm. Z. Wahrscheinlichkeitstheorie 15, 279–290 (1970)

    Article  MATH  Google Scholar 

  22. Stout, W.F.: Almost Sure Convergence, Probability and Mathematical Statistics, vol. 24. Academic Press, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bercu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bercu, B., Laulin, L. On the Multi-dimensional Elephant Random Walk. J Stat Phys 175, 1146–1163 (2019). https://doi.org/10.1007/s10955-019-02282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02282-8

Keywords

Navigation