Skip to main content

Advertisement

Log in

Second-Order Cone and Semidefinite Representations of Material Failure Criteria

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A class of important problems in structural mechanics leads to optimization problems with linear objective functions and constraints consisting in (a) linear equalities and (b) inequalities imposed by the material strength, the so-called failure criteria. It is shown that a wide variety of failure criteria can be represented as systems of either second-order cone or semidefinite constraints, giving rise to respective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neal, B.G.: The Plastic Methods of Structural Analysis, 2nd edn. Chapman and Hall, London (1963)

    Google Scholar 

  2. Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, New York (1988)

    MATH  Google Scholar 

  3. Save, M.A., Massonet, C.E., De Saxce, G.: Plastic Limit Analysis of Plates, Shells and Disks. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  4. König, J.A.: Shakedown of Elastic-Plastic Structures. Elsevier, Amsterdam (1987)

    Google Scholar 

  5. Kamenjarzh, J.: Limit Analysis of Solids and Structures. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  6. Christiansen, E.: Limit analysis of collapse states. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. vol. 4, pp. 193–312. North-Holland, Amsterdam (1996)

    Google Scholar 

  7. Chen, W.F., Mizuno, E.: Nonlinear Analysis in Soil Mechanics. Theory and Implementation. Elsevier, Amsterdam (1990)

    Google Scholar 

  8. Davis, R.O., Selvadurai, A.P.S.: Plasticity and Geomechanics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. Melan, E.: Theory of ideally plastic statically redundant systems. Sitzung. Österreich. Akad. Wiss. Math. Natur. Klas. IIa 145, 195–218 (1936) (in German)

    Google Scholar 

  10. Melan, E.: On the plasticity of the three-dimensional continuum. Ingenieur-Archiv 8, 116–126 (1938) (in German)

    Article  Google Scholar 

  11. Koiter, W.T.: General theorems for elastic-plastic solids. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, pp. 165–221. North-Holland, Amsterdam (1960)

    Google Scholar 

  12. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Analysis, Algorithms and Engineering Applications. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  13. Vandenberghe, L., Boyd, S.: Convex Optimization. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Ramana, M., Pardalos, P.M.: Semidefinite programming. In: Terlacky, T. (ed.) Interior Point Methods of Mathematical Programming, pp. 369–398. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  15. Pardalos, P.M., Wolkowicz, H. (eds.): Topics in Semidefinite and Interior-Point Methods, vol. 18. Fields Institute and American Mathematical Society, Providence, 1998

  16. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  17. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ben-Tal, A., Bendsoe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 3, 322–358 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7, 991–1016 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ben-Tal, A., Kočvara, M., Nemirovski, A., Zowe, J.: Free material optimization via semidefinite programming: the multiload case with contact conditions. SIAM J. Optim. 9, 813–832 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ben-Tal, A., Nemirovski, A.: Structural design. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, pp. 443–467. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  23. Kanno, Y., Oshaki, M., Ito, J.: Large deformation and friction analysis of non-linear elastic cable networks by second-order cone programming. Int. J. Num. Methods Eng. 55, 1079–1114 (2002)

    Article  MATH  Google Scholar 

  24. Sasakawa, T., Tsuchiya, T.: Optimal magnetic shield design with second-order cone programming. SIAM J. Sci. Comput. 24, 1930–1950 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maier, G.: Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: a finite element, linear programming approach. Meccanica 4, 250–260 (1969)

    Article  MATH  Google Scholar 

  26. Cohn, M.Z., Maier, G. (eds.): Engineering Plasticity by Mathematical Programming. Pergamon, New York (1977)

    Google Scholar 

  27. Bottero, A., Negre, R., Pastor, J., Turgeman, S.: Finite element method and limit analysis theory for soil mechanics problems. Comput. Methods Appl. Mech. Eng. 22, 131–149 (1980)

    Article  MATH  Google Scholar 

  28. Smith, D.L. (ed.): Mathematical Programming Methods in Structural Plasticity. Springer, Vienna (1993)

    Google Scholar 

  29. Mroz, M.Z., Weichert, D., Dorosz, S. (eds.): Inelastic Behavior of Structures under Variable Loads. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  30. Weichert, D., Maier, G. (eds.): Inelastic Analysis of Structures under Variable Loads. Theory and Engineering Applications. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  31. Weichert, D., Maier, G. (eds.): Inelastic Behavior of Structures under Variable Repeated Loads. Direct Analysis Methods. Springer, Vienna (2000)

    Google Scholar 

  32. Heitzer, M., Staat, M. (eds.): Numerical Methods for Limit and Shakedown Analysis. NIC-Series, vol. 15. J.v. Neumann Institute for Computing, Juelich (2003). Available at http://www.fz-juelich.de/lisa

    Google Scholar 

  33. Zouain, N., Borges, L., Silveira, J.L.: An algorithm for shakedown analysis with nonlinear yield functions. Comput. Methods Appl. Mech. Eng. 191, 2463–2481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Krabbenhoft, K., Darnkilde, L.: A general nonlinear optimization algorithm for lower bound limit analysis. Int. J. Numer. Methods Eng. 56, 165–184 (2003)

    Article  MATH  Google Scholar 

  35. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robustness. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, pp. 139–162. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  36. Jarre, F.: Convex analysis on symmetric matrices. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, pp. 13–27. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  37. Wolkowicz, H., Styan, G.P.H.: Bounds for eigenvalues using traces. Linear Algebra Appl. 29, 471–506 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  38. Coulomb, C.A.: Study on an application of the maximum and minimum rules related to some problems of statics of architecture. Mem. Math. Phys. Acad. Roy. Sci. Paris 7, 343–382 (1776) (in French)

    Google Scholar 

  39. Heyman, J.: Coulomb’s Memoir on Statics: An Essay in the History of Civil Engineering. Cambridge University Press, Cambridge (1972)

    MATH  Google Scholar 

  40. Makrodimopoulos, A.: Computational approaches to the shakedown phenomena of metal structures under plane and axisymmetric stress state. Doctoral Dissertation, Aristotle University, Thessaloniki, Greece (2001) (in Greek)

  41. Makrodimopoulos, A., Bisbos, C.D.: Shakedown analysis of plane stress problems via SOCP. In: Heitzer, M., Staat, M. (eds.) Numerical Methods for Limit and Shakedown Analysis. NIC-Series, vol. 15, pp. 185–216. J.v. Neumann Institute for Computing, Juelich (2003)

    Google Scholar 

  42. Bisbos, C.D., Makrodimopoulos, A., Pardalos, P.M.: Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim. Meth. Softw. 20, 25–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Trillat, M., Pastor, J., Francescato, P.: Yield criterion for porous media with spherical voids. Mech. Res. Commun. 33, 320–328 (2006)

    Article  Google Scholar 

  44. Bisbos, C.D.: Semidefinite optimization models for limit and shakedown analysis problems involving matrix spreads. Optim. Lett. 1, 101–109 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Psomiadis, V.G.: Shakedown analysis of elastoplastic metal structures under the three-dimensional Tresca yield criterion via semidefinite programming techniques. Doctoral Dissertation, Aristotle University, Thessaloniki, Greece (2005) (in Greek)

  46. Psomiadis, V.G., Bisbos, C.D.: Shakedown analysis of steel structures under the three-dimensional Tresca yield criterion. In: Proceedings of the 5th Greek National Conference on Metal Structures, Xanthi, Greece, vol. II, pp. 305–312 (2005) (in Greek)

  47. Mirsky, L.: The spread of a matrix. Mathematika 3, 127–130 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  48. Brauer, A., Mewborn, A.C.: The greatest distance between two characteristic roots of a matrix. Duke Math. J. 26, 653–661 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  49. Hill, R.: A theory of the yielding and plastic flow of anisotropic materials. Proc. Roy. Soc. Ser. A 193, 281–297 (1947)

    Article  Google Scholar 

  50. Tsai, S.W., Wu, E.M.: A general theory of strength of anisotropic materials. J. Compos. Mater. 8, 58–80 (1971)

    Article  Google Scholar 

  51. Corradi, L., Luzzi, L., Vena, P.: Finite element limit analysis of anisotropic structures. Comput. Methods Appl. Mech. Eng. 195, 5422–5436 (2006)

    Article  MATH  Google Scholar 

  52. Stein, E., Zhang, G., König, J.A.: Shakedown with nonlinear strain-hardening including structural computation using finite element method. Int. J. Plast. 8, 1–31 (1992)

    Article  MATH  Google Scholar 

  53. Stein, E., Zhang, G., Mahnken, R.: Shakedown analysis for perfectly plastic and kinematic hardening materials. In: Stein, E. (ed.) Progress in Computational Analysis of Inelastic Structures, pp. 175–244. Springer, Vienna (1993)

    Google Scholar 

  54. Makrodimopoulos, A., Martin, C.M.: Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int. J. Numer. Methods Eng. 66, 604–634 (2006)

    Article  MATH  Google Scholar 

  55. Ilyushin, A.A.: Plasticité. Eyrolles, Paris (1956)

    Google Scholar 

  56. Mohammed, A.K., Skallerud, B., Amdahl, J.: Simplified stress resultants plasticity on a geometrically nonlinear constant stress shell element. Comput. Stuct. 9, 1723–1734 (2001)

    Article  Google Scholar 

  57. Papaioannou, G., Bisbos, C.D.: Ductile low-cycle-fatigue analysis of hollow sections joints. In: Proceedings of the 5th Greek National Conference on Metal Structures, Xanthi, Greece, vol. I, pp. 370–377 (2005) (in Greek)

  58. Nielsen, M.P.: Limit Analysis and Concrete Plasticity, 2nd edn. Prentice-Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  59. Krabbenhoft, K., Damkilde, L.: Lower bound limit analysis of slabs with nonlinear yield criteria. Comp. Struct. 80, 2043–2057 (2002)

    Article  Google Scholar 

  60. Olsen, P.C.: The influence of the linearization of the yield surface on the load-bearing capacity of reinforced concrete slabs. Comput. Methods Appl. Mech. Eng. 162, 351–358 (1998)

    Article  MATH  Google Scholar 

  61. Sacchi-Landriani, G., Salencon, J. (eds.): Evaluation of Global Bearing Capacities of Structures. Springer, Vienna (1993)

    MATH  Google Scholar 

  62. Lyamin, A.V., Sloan, S.W.: Lower bound limit analysis using nonlinear programming. Int. J. Numer. Methods Eng. 55, 573–611 (2002)

    Article  MATH  Google Scholar 

  63. Andersen, K.D., Christiansen, E., Overton, M.L.: Computing limit loads by minimizing a sum of norms. SIAM J. Sci. Comput. 19, 1046–1062 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Bisbos.

Additional information

Work partially supported by Air Force grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisbos, C.D., Pardalos, P.M. Second-Order Cone and Semidefinite Representations of Material Failure Criteria. J Optim Theory Appl 134, 275–301 (2007). https://doi.org/10.1007/s10957-007-9243-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9243-8

Keywords

Navigation