Skip to main content
Log in

Convexity of the Proximal Average

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We complete the study of the convexity of the proximal average by proving it is convex as a function of each of its parameters separately, but not jointly convex as a function of any two of its parameters. We present an interpolation-based plotting algorithm that takes advantage of the partial convexity of the proximal average, and improves the plotting time by a factor of 100, while reducing picture sizes by a factor of 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atteia, M., Raïssouli, M.: Self dual operators on convex functionals; geometric mean and square root of convex functionals. J. Convex Anal. 8, 223–240 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Wang, X.: The kernel average of two convex functions and its application to the extension and representation of monotone operators. Trans. Am. Math. Soc. 361, 5947–5965 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: Convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Lucet, Y., Wang, X.: Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators. SIAM J. Control Optim. 46, 2031–2051 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: Basic theory. SIAM J. Optim. 19, 768–785 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Lucet, Y., Trienis, M.: How to transform one convex function continuously into another. SIAM Rev. 50, 115–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gardiner, B., Lucet, Y.: Numerical computation of Fitzpatrick functions. J. Convex Anal. 16, 779–790 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Ghoussoub, N.: A theory of anti-selfdual Lagrangians: stationary case. C. R. Math. Acad. Sci. Paris 340, 245–250 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Ghoussoub, N.: Maximal monotone operators are selfdual vector fields and vice-versa (2006). http://www.birs.ca/-02-08.pdf

  11. Ghoussoub, N.: Selfdual Partial Differential Systems and their Variational Principles. Springer, Berlin (2009)

    Google Scholar 

  12. Goebel, R.: Self-dual smoothing of convex and saddle functions. J. Convex Anal. 15, 179–190 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Hare, W.: A proximal average for nonconvex functions: A proximal stability perspective. SIAM J. Optim. 20, 650–666 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305–306. Springer, Berlin (1993). Vol. I: Fundamentals, Vol. II: Advanced theory and bundle methods

    Google Scholar 

  15. Lucet, Y.: A fast computational algorithm for the Legendre–Fenchel transform. Comput. Optim. Appl. 6, 27–57 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms 16, 171–185 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lucet, Y.: Fast Moreau envelope computation I: Numerical algorithms. Numer. Algorithms 43, 235–249 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lucet, Y.: New sequential exact Euclidean distance transform algorithms based on convex analysis. Image Vis. Comput. 27, 37–44 (2009)

    Article  Google Scholar 

  19. Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20, 216–250 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear-quadratic model for computational convex analysis. Comput. Optim. Appl. 43, 95–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maréchal, P.: On a functional operation generating convex functions. I. Duality. J. Optim. Theory Appl. 126, 175–189 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maréchal, P.: On a functional operation generating convex functions. II. Algebraic properties. J. Optim. Theory Appl. 126, 357–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. McAllister, D.F., Roulier, J.A.: Interpolation by convex quadratic splines. Math. Comput. 32, 1154–1162 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. McAllister, D.F., Roulier, J.A.: An algorithm for computing a shape-preserving osculatory quadratic spline. ACM Trans. Math. Softw. 7, 331–347 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  26. Renka, R.J.: Algorithm 790: CSHEP2D: cubic Shepard method for bivariate interpolation of scattered data. ACM Trans. Math. Softw. 25, 70–73 (1999)

    Article  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  28. Segre, E.: Enrico color graphic toolbox. http://www.scilab.org/contrib/ (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Lucet.

Additional information

Communicated by F. Zirilli.

The authors would like to thank Dr. Mason Macklem for his carefully reading of the manuscript. Yves Lucet was partially supported by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada. Valentin Koch was partially supported by the Ministry of Advanced Education of the province of British Columbia through a Pacific Century Graduate Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, J.A., Koch, V.R. & Lucet, Y. Convexity of the Proximal Average. J Optim Theory Appl 148, 107–124 (2011). https://doi.org/10.1007/s10957-010-9747-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9747-5

Keywords

Navigation