Skip to main content

Advertisement

Log in

Averaged Mappings and the Gradient-Projection Algorithm

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

It is well known that the gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this article, we first provide an alternative averaged mapping approach to the GPA. This approach is operator-oriented in nature. Since, in general, in infinite-dimensional Hilbert spaces, GPA has only weak convergence, we provide two modifications of GPA so that strong convergence is guaranteed. Regularization is also applied to find the minimum-norm solution of the minimization problem under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. Zh. Vychisl. Mat. Mat. Fiz. 6, 787–823 (1966)

    MATH  Google Scholar 

  2. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  3. Polyak, B.T.: Introduction to optimization. In: Optimization Software, New York (1987)

  4. Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Optim. 1, 35–43 (2010)

    Google Scholar 

  5. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  9. Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  10. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    Article  Google Scholar 

  11. Lopez, G., Martin, V., Xu, H.K.: Perturbation techniques for nonexpansive mappings with applications. Nonlinear Anal., Real World Appl. 10, 2369–2383 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lopez, G., Martin, V., Xu, H.K.: Iterative algorithms for the multiple-sets split feasibility problem. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, pp. 243–279. Medical Physics Publishing, Madison (2009)

    Google Scholar 

  13. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  15. Brezis, H.: Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)

    Google Scholar 

  16. Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with applications to the traffic assignment problem. Math. Program. Stud. 17, 139–159 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Han, D., Lo, H.K.: Solving non-additive traffic assignment problems: a descent method for co-coercive variational inequalities. Eur. J. Oper. Res. 159, 529–544 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes. Nonlinear Anal. 64, 2400–2411 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MATH  Google Scholar 

  20. Opial, Z.: Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Am. Math. Soc. 73, 595–597 (1967)

    Article  MathSciNet  Google Scholar 

  21. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Féjer-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 100, 201–225 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. Baillon, J.B., Haddad, G.: Quelques proprietes des operateurs angle-bornes et n-cycliquement monotones. Isr. J. Math. 26, 137–150 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hundal, H.: An alternating projection that does not converge in norm. Nonlinear Anal. 57, 35–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bauschke, H.H., Burke, J.V., Deutsch, F.R., Hundal, H.S., Vanderwerff, J.D.: A new proximal point iteration that converges weakly but not in norm. Proc. Am. Math. Soc. 133, 1829–1835 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bauschke, H.H., Matouskova, E., Reich, S.: Projections and proximal point methods: Convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Matouskova, E., Reich, S.: The Hundal example revisited. J. Nonlinear Convex Anal. 4, 411–427 (2003)

    MATH  MathSciNet  Google Scholar 

  29. Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program., Ser. A 87, 189–202 (2000)

    MATH  MathSciNet  Google Scholar 

  30. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791–808 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu, H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)

    Article  MATH  Google Scholar 

  32. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  33. Güler, O.: On the convergence of the proximal point algorithm for convex optimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Kun Xu.

Additional information

Communicated by J.-C. Yao.

The author would like to thank the referees for their helpful comments on this manuscript. He was supported in part by NSC 97-2628-M-110-003-MY3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HK. Averaged Mappings and the Gradient-Projection Algorithm. J Optim Theory Appl 150, 360–378 (2011). https://doi.org/10.1007/s10957-011-9837-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9837-z

Keywords

Navigation