Skip to main content
Log in

Optimal Control Approach to Nonlinear Diffusion Equations Driven by Wiener Noise

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The stochastic nonlinear infinite-dimensional equations of gradient type and with additive Wiener noise can be reduced to an optimal convex control problem via Brezis–Ekeland duality device. This approach is illustrated here on a few classes of nonlinear stochastic parabolic equations which are relevant as diffusion models under stochastic Gaussian perturbations, and image restoring technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. Le cas indépendent du temps. C. R. Acad. Sci. Paris 282, 971–974 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. Le cas indépendent du temps. C. R. Acad. Sci. Paris 282, 1197–1198 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Ghoussoub, N., Tzou, L.: A variational principle for gradient flows. Math. Ann. 330, 519–549 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghoussoub, N.: Selfdual Partial Differential Systems and Their Variational Principles. Springer, New York (2008)

    Google Scholar 

  5. Marinoschi, G.: Variational approach to time-dependent nonlinear diffusion equations (to appear)

  6. Stefanelli, U.: The Brezis–Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 8, 1615–1642 (2008)

    Article  MathSciNet  Google Scholar 

  7. Visintin, A.: Extension of the Brezis–Ekeland–Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18, 633–650 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Auchmuty, G.: Saddle-points and existence-uniqueness for evolution equations. Differ. Integral Equ. 6, 1167–1171 (1993)

    MathSciNet  Google Scholar 

  9. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  11. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New York (2010)

    Book  Google Scholar 

  12. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. D. Reidel, Dordrecht (1986). New edition, Springer, New York (2011)

    MATH  Google Scholar 

  13. Barbu, V.: A variational approach stochastic nonlinear problems. J. Math. Anal. Appl. 384, 2–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barbu, V.: Existence for semilinear parabolic stochastic equations. Rend. Lincei Mat. Appl. 21, 297–403 (2010)

    MathSciNet  Google Scholar 

  15. Barbu, V., Da Prato, G., Tubaro, L.: The stochastic reflection problem in Hilbert space. Commun. Partial Differ. Equ. (to appear)

  16. Rockafellar, R.T.: Integrals which are convex functional. II. Pac. J. Math. 29, 439–469 (1971)

    MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: State constraints in convex control problem of Bolza. SIAM J. Control 10, 691–716 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cepa, E.: Problème de Skorohod multivoque. Ann. Probab. 26, 500–532 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barbu, V., Da Prato, G.: The generator of the transitive semigroup corresponding to a stochastic variational inequality. Commun. Partial Differ. Equ. 33, 1318–1338 (2008)

    Article  MATH  Google Scholar 

  20. Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Stat. Phys. 95, 1187–1220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barbu, T., Barbu, V., Biga, V., Coca, D.: A PDE variational approach to image denoising and restoration. Nonlinear Anal., Real World Appl. 10, 1351–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  23. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon/Oxford University Press, New York (2000)

    MATH  Google Scholar 

  24. Barbu, V., Da Prato, G., Röckner, M.: Stochastic nonlinear diffusion equation with singular diffusivity. SIAM J. Math. Anal. 41, 1106–1120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Proceedings of Workshop/Miniconference on Function Analysis and Optimization, pp. 59–65, Centre Math. Anal. Australian Nat. University, Canberra (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbu, V. Optimal Control Approach to Nonlinear Diffusion Equations Driven by Wiener Noise. J Optim Theory Appl 153, 1–26 (2012). https://doi.org/10.1007/s10957-011-9946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9946-8

Keywords

Navigation