Skip to main content

Advertisement

Log in

Differential Evolution with Wavelet Mutation in Digital Finite Impulse Response Filter Design

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper proposes one novel algorithm called differential evolution with wavelet mutation for the optimal design of linear phase finite impulse response filters. For comparative performance study, the Parks–McClellan algorithm and some evolutionary algorithms like the real coded genetic algorithm, conventional particle swarm optimization, and conventional differential evolution have also been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parks, T.W., McClellan, J.H.: Chebyshev approximation for non recursive digital filters with linear phase. IEEE Trans. Circuits Theory CT-19, 189–194 (1972)

    Article  Google Scholar 

  2. McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear phase digital filters. IEEE Trans. Audio Electroacoust. AU-21, 506–526 (1973)

    Article  Google Scholar 

  3. Ciloglu, T.: An efficient local search method guided by gradient information for discrete coefficient FIR filter design. Signal Process. 82(10), 1337–1350 (2002)

    Article  MATH  Google Scholar 

  4. Mastorakis, N.E., Gonos, I.F., Swamy, M.N.S.: Design of two dimensional recursive filters using genetic algorithms. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 634–639 (2003)

    Article  MathSciNet  Google Scholar 

  5. Mandal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Optimal linear phase FIR band pass filter design using craziness based particle swarm optimization algorithm. J. Shanghai Jiaotong Univ., Sci. 16(6), 696–703 (2011)

    Article  Google Scholar 

  6. Mandal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Design of optimal linear phase FIR high pass filter using craziness based particle swarm optimization technique. J. King Saud Univ, Comput. Inf. Sci. (2011). doi:10.1016/j.jksuci.2011.10.007

    Google Scholar 

  7. Karaboga, N., Cetinkaya, B.: Design of digital FIR filters using differential evolution algorithm. Circuits Syst. Signal Process. 25(5), 649–660 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, G., Li, Y.X., He, G.: Design of digital FIR filters using differential evolution algorithm based on reserved gene. In: IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

    Google Scholar 

  9. Pan, S.T.: Evolutionary computation on programmable robust IIR filter pole-placement design. IEEE Trans. Instrum. Meas. 60(4), 1469–1479 (2011)

    Article  Google Scholar 

  10. Najjarzadeh, M., Ayatollahi, A.: FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: IEEE International Symp. on Signal Proc. and Information Tech, pp. 129–132 (2008)

    Google Scholar 

  11. Ababneh, J.I., Bataineh, M.H.: Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digit. Signal Process. 18(4), 657–668 (2008)

    Article  Google Scholar 

  12. Luitel, B., Venayagamoorthy, G.K.: Particle swarm optimization with quantum infusion for system identification. Eng. Appl. Artif. Intell. 23(5), 635–649 (2010)

    Article  Google Scholar 

  13. Sarangi, A., Mahapatra, R.K., Panigrahi, S.P.: DEPSO and PSO-QI in digital filter design. Expert Syst. Appl. 38(9), 10966–10973 (2011)

    Article  Google Scholar 

  14. Rashedi, E., Hossien, N., Saryazdi, S.: Filter modelling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

    Article  Google Scholar 

  15. Dai, C., Chen, W., Zhu, Y.: Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 57(5), 1710–1718 (2010)

    Article  Google Scholar 

  16. Luitel, B., Venayagamoorthy, G.K.: Differential evolution particle swarm optimization for digital filter design. In: IEEE Congress on Evolutionary Computation. CEC 2008, pp. 3954–3961 (2008)

    Google Scholar 

  17. Hime, A., Oliveira, Jr., Petraglia, A., Petraglia, M.R.: Frequency domain FIR filter design using fuzzy adaptive simulated annealing. Circuits Syst. Signal Process. 28, 899–911 (2009)

    Article  MATH  Google Scholar 

  18. Daubechies, I.: The wavelet transform, time frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mallat, S.G.: A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  20. Ling, S.H., Iu, H.H.C., Leung, F.H.F., Chan, K.Y.: Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging. IEEE Trans. Ind. Electron. 55(9), 3447–3460 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durbadal Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Ghoshal, S.P., Kar, R. et al. Differential Evolution with Wavelet Mutation in Digital Finite Impulse Response Filter Design. J Optim Theory Appl 155, 315–324 (2012). https://doi.org/10.1007/s10957-012-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0028-3

Keywords

Navigation