Skip to main content
Log in

Lagrange Duality in Set Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Based on the complete-lattice approach, a new Lagrangian type duality theory for set-valued optimization problems is presented. In contrast to previous approaches, set-valued versions for the known scalar formulas involving infimum and supremum are obtained. In particular, a strong duality theorem, which includes the existence of the dual solution, is given under very weak assumptions: The ordering cone may have an empty interior or may not be pointed. “Saddle sets” replace the usual notion of saddle points for the Lagrangian, and this concept is proven to be sufficient to show the equivalence between the existence of primal/dual solutions and strong duality on the one hand, and the existence of a saddle set for the Lagrangian on the other hand. Applications to set-valued risk measures are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that X and Y in this section denote random variables, not linear spaces.

References

  1. Löhne, A.: Vector Optimization with Infimum and Supremum. Vector Optimization. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Borwein, J.M.: Multivalued convexity and optimization: a unified approach to inequality and equality constraints. Math. Program. 13, 183–199 (1977)

    Article  MATH  Google Scholar 

  3. Borwein, J.M.: A Lagrange multiplier theorem and a sandwich theorem for convex relations. Math. Scand. 48(2), 189–204 (1981)

    Google Scholar 

  4. Borwein, J.M.: Convex relations in analysis and optimization. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 335–377. Academic Press, New York (1981)

    Google Scholar 

  5. Oettli, W.: Optimality conditions for programming problems involving multivalued mappings. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 227–238. Academic Press, New York (1981)

    Google Scholar 

  6. Oettli, W.: Optimality conditions for programming problems involving multivalued mappings. In: Modern Applied Mathematics, Bonn, 1979, pp. 195–226. North-Holland, Amsterdam (1982)

    Google Scholar 

  7. Tanino, T., Sawaragi, Y.: Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 31(4), 473–499 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Corley, H.W.: Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54(3), 489–501 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Sciences, vol. 319. Springer, Berlin (1988)

    MATH  Google Scholar 

  10. Postolică, V.: Vectorial optimization programs with multifunctions and duality. Ann. Sci. Math. Qué. 10(1), 85–102 (1986)

    MATH  Google Scholar 

  11. Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167(1), 84–97 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Löhne, A., Tammer, C.: A new approach to duality in vector optimization. Optimization 56(1–2), 221–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuroiwa, D.: Lagrange duality of set-valued optimization with natural criteria. RIMS Kokyuroku 1068, 164–170 (1998)

    MATH  MathSciNet  Google Scholar 

  15. Kuroiwa, D.: Existence of efficient points of set optimization with weighted criteria. J. Nonlinear Convex Anal. 4(1), 117–123 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Jahn, J.: Vector Optimization. Springer, Berlin (2004). Theory, applications, and extensions

    Book  MATH  Google Scholar 

  17. Hernández, E., Rodríguez-Marín, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67(6), 1726–1736 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hamel, A.H., Löhne, A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7(1), 19–37 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Flores-Bazán, F., Gutiérrez, C., Novo, V.: A Brézis-Browder principle on partially ordered spaces and related ordering theorems. J. Math. Anal. Appl. 375(1), 245–260 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamel, A.: Variational principles on metric and uniform spaces. Habilitation thesis, Martin-Luther-University Halle-Wittenberg (2005)

  21. Löhne, A.: Optimization with set relations. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg (2005)

  22. Hamel, A.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set-Valued Var. Anal. 17, 153–182 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ha, T.X.D.: Lagrange multipliers for set-valued optimization problems associated with coderivatives. J. Math. Anal. Appl. 311(2), 647–663 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hernández, E., Rodríguez-Marín, L.: Duality in set optimization with set-valued maps. Pac. J. Optim. 3(2), 245–255 (2007)

    MathSciNet  Google Scholar 

  25. Hernández, E., Rodríguez-Marín, L.: Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134(1), 119–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Boţ, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Vector Optimization. Springer, Berlin (2009)

    Google Scholar 

  27. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8(4), 531–552 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1, 66–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5(1), 1–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7(2), 229–246 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Löhne, A., Schrage, C.: An algorithm to solve polyhedral convex set optimization problems. Optimization 62(1), 131–141 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hernández, E., Löhne, A., Rodríguez-Marín, L., Tammer, C.: Lagrange duality, stability and subdifferentials in vector optimization. Optimization 62(2), 1726–1736 (2013)

    Google Scholar 

  33. Song, W.: Conjugate duality in set-valued vector optimization. J. Math. Anal. Appl. 216(1), 265–283 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Heyde, F., Löhne, A.: Solution concepts in vector optimization: a fresh look at an old story. Optimization 60(12), 1421–1440 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schrage, C.: Set-valued convex analysis. PhD thesis, Martin-Luther-Universität Halle-Wittenberg (2009)

  36. Hamel, A., Schrage, C.: Notes on extended real- and set-valued functions. J. Convex Anal. 19(2) (2012)

  37. Schrage, C.: Scalar representation and conjugation of set-valued functions. Optimization (2012). doi:10.1080/02331934.2012.741126

    MATH  Google Scholar 

  38. Jahn, J.: Vectorization in set optimization. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0363-z

    MATH  Google Scholar 

  39. Dolecki, S., Malivert, C.: General duality in vector optimization. Optimization 27(1–2), 97–119 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  40. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization, 2nd edn. CMS Books in Mathematics, vol. 3. Springer, New York (2006). Ouvrages de Mathématiques de la SMC

    Book  MATH  Google Scholar 

  41. Giannessi, F.: On the theory of Lagrangian duality. Optim. Lett. 1(1), 9–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Heyde, F., Schrage, C.: Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization. J. Math. Anal. Appl. 397(2), 772–784 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Hamel, A., Schrage, C.: Directional derivatives and subdifferentials of set-valued convex functions (2012). Preprint arXiv:1207.5295

Download references

Acknowledgements

The authors are very grateful for the detailed comments of the reviewers which helped to improve the paper. Moreover, the inspirational remarks of Prof. Giannessi are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Hamel.

Additional information

Communicated by Fabian Flores-Bazàn.

Appendix

Appendix

The following definition is taken from [20], where references and more material about structural properties of conlinear spaces can be found.

Definition 9.1

A non-empty set W together with two algebraic operations +:W×WW (called addition) and \(\cdot\colon{\mathbb {R}}_{+} \times W \to W\) (called multiplication with non-negative scalars) is called a conlinear space provided that

  1. (C1)

    (W,+) is a commutative semigroup with neutral element θ.

  2. (C2)
    1. (i)

      w 1,w 2W, \(\forall r \in{\mathbb{R}}_{+}\): r⋅(w 1+w 2)=rw 1+rw 2,

    2. (ii)

      wW, \(\forall r, s \in{\mathbb{R}}_{+}\): s⋅(rw)=(rs)⋅w,

    3. (iii)

      wW: 1⋅w=w,

    4. (iv)

      0⋅θ=θ.

An element wW is called a convex element of the conlinear space W iff

$$\forall s, t \geq0 \colon\quad ( s+t ) \cdot w = s \cdot w + t \cdot w. $$

A conlinear space (W,+,⋅) together with a partial order ⪯ on W (a reflexive, antisymmetric and transitive relation) is called ordered conlinear space provided that (iv) w,w 1,w 2W, w 1w 2 imply w 1+ww 2+w, (v) w 1,w 2W, w 1w 2, \(r \in{\mathbb{R}}_{+}\) imply rw 1rw 2. A non-empty subset VW of the conlinear space (W,+,⋅) is called a conlinear subspace of W if (vi) v 1,v 2V implies v 1+v 2V and (vii) vV and t≥0 imply tvV.

It can easily be checked that a conlinear subspace of a conlinear space again is a conlinear space.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamel, A.H., Löhne, A. Lagrange Duality in Set Optimization. J Optim Theory Appl 161, 368–397 (2014). https://doi.org/10.1007/s10957-013-0431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0431-4

Keywords

Navigation