Skip to main content

Advertisement

Log in

A Relaxed Projection Method for Split Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the recently introduced split variational inequality under the framework of variational inequalities in a product space. The feature of our equivalent formulation of split variational inequality is its variable separability (that is, splitting nature) together with a linear constraint. We propose a relaxed projection method, which fully exploits the splitting structure of split variational inequality and which is not only easily implementable, but also globally convergent under some mild conditions. Our numerical results on finding the minimum-norm solution of the split feasibility problem and on solving a separable and convex quadratic programming problem verify the efficiency and stability of our new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34, 138–142 (1963)

  2. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. CR Acad. Sci. Paris 258, 4413–4416 (1964)

    MATH  MathSciNet  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  4. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithm 59, 301–323 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrne, C.L.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  7. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithm 8, 221–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. López, G., Martin-Marquez, V., Wang, F.H., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)

    Article  Google Scholar 

  10. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  12. Xu, H.K.: terative methods for the split feasibility problem in infinite dimensional Hilbert spaces. nverse Probl. 26, 105018 (2010)

    Article  Google Scholar 

  13. Yang, Q.Z.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MATH  Google Scholar 

  14. Zhang, W.X., Han, D.R., Li, Z.B.: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse Probl. 25, 115001 (2009)

    Article  MathSciNet  Google Scholar 

  15. Zhang, W.X., Han, D.R., Yuan, X.M.: An efficient simultaneous method for the constrained multiple-sets split feasibility problem. Comput. Optim. Appl. 52, 825–843 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Byrne, C.L.: Iterative projection onto convex sets using multiple Bregman distances. Inverse Probl. 15, 1295–1313 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Byrne, C.L.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26, 065008 (2010)

    Article  MathSciNet  Google Scholar 

  21. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MATH  MathSciNet  Google Scholar 

  22. Censor, Y., Gibali, A., Reich, S.: A von Neumann alternating method for finding common solutions to variational inequalities. Nonlinear Anal. 75, 4596–4603 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Set-Valued Var. Anal. 20, 229–247 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Colao, V., Marino, G., Xu, H.K.: An iterative method for finding common solutions of equilibrium and fixed point problems. J. Math. Anal. Appl. 344, 340–352 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 2, 93–111 (1992)

    Article  MathSciNet  Google Scholar 

  27. Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping. Optim. Lett. 8, 1113–1124 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moudafi, A.: Split monotone variational inclusion. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Optim. 7, 951–965 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MATH  Google Scholar 

  32. Kazmi, K.R.: Split nonconvex variational inequality problem. Math. Sci. 7, 36 (2013)

    Article  MathSciNet  Google Scholar 

  33. Kazmi, K.R.: Split general quasi-variational inequality problem. arXiv preprint: arXiv:1308.2750 (2013)

  34. He, Z.H.: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012, 1–15 (2012)

    Article  MATH  Google Scholar 

  35. Kazmi, K.R., Rizvi, S.H.: Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem. J. Egypt. Med. Assoc. 21, 44–51 (2013)

    MATH  MathSciNet  Google Scholar 

  36. Maingé, P.M.: A viscosity method with no spectral radius requirements for the split common fixed point problem. Eur. J. Oper. Res. 235, 17–27 (2014)

    Article  MATH  Google Scholar 

  37. He, B.S.: Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42, 195–212 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating direction method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. He, H.J., Han, D.R., Sun, W.Y., Chen, Y.N.: A hybrid splitting method for variational inequality problems with separable structure. Optim. Method Softw. 28, 725–742 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu, M.H.: Proximal alternating directions method for structured variational inequalities. J. Optim. Theory Appl. 134, 107–117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yuan, X.M.: An improved proximal alternating direction method for monotone variational inequalities with separable structure. Comput. Optim. Appl. 49, 17–29 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. He, B.S., Liao, L.Z., Qian, M.J.: Alternating projection based prediction-correction methods for structured variational inequalities. J. Comput. Math. 24, 693–710 (2006)

    MATH  MathSciNet  Google Scholar 

  43. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation, Numerical Methods. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  44. Palta, J.R., Mackie, T.R.: Intensity Modulated Radiation Therapy: The State of the Art. Medical Physical Monograph. American Association of Physists in Medicine, vol. 29. Medical Physical Publishing, Madison (2003)

    Google Scholar 

  45. Wu, Q., Mohan, R., Niemierko, A., Schmidt-Ullrich, R.: Optimization of intensity-modulated radiotherapy plan based on the equivalent uniform dose. Int. J. Radiat. Oncol. Biol. Phys. 52, 224–235 (2003)

    Article  Google Scholar 

  46. Tao, M., Yuan, X.M.: An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures. Comput. Optim. Appl. 52, 439–461 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ceng, L.C., Ansari, Q.H., Yao, J.C.: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 75, 2116–2125 (2012)

  48. Han, D.R., He, H.J., Yang, H., Yuan, X.M.: A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127, 167–200 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  49. Golub, G.H., von Matt, U.: Quadratically constrained least squares and quadratic problems. Numer. Math. 59, 561–580 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  50. Han, D.R.: Inexact operator splitting methods with self-adaptive strategy for variational inequality problems. J. Optim. Theory Appl. 132, 227–243 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors were grateful to the two anonymous referees for their valuable comments and suggestions which improved the presentation of the paper. The first two authors were supported by NSFC (11171083, 11301123), Zhangjiang Provincial NSFC LZ14A010003 and Research Foundation of Hangzhou Dianzi University (KYS075612037). The third author was supported in part by NSC 102-2115-M-110-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Kun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Ling, C. & Xu, HK. A Relaxed Projection Method for Split Variational Inequalities. J Optim Theory Appl 166, 213–233 (2015). https://doi.org/10.1007/s10957-014-0598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0598-3

Keywords

Mathematics Subject Classification

Navigation