Skip to main content
Log in

Arrow Sufficient Conditions for Optimality of Fully Coupled Forward–Backward Stochastic Differential Equations with Applications to Finance

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with optimal control problems of fully coupled forward–backward stochastic differential equations on finite horizon and infinite horizon with partial information. Two sufficient conditions for optimality are established for the above problems. We demonstrate their applications by four illustrative examples in the framework of cash management, risk minimizing, and linear-quadratic optimal control problems. These examples are explicitly solved based on the sufficient conditions and the optimal filtering of forward–backward stochastic differential equations derived in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonelli, F.: Backward-forward stochastic differential equations. Ann. Appl. Probab. 3, 777–793 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ma, J., Protter, P., Yong, J.: Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Relat. Fields 98, 339–359 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hu, Y., Peng, S.: Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103, 273–283 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37(3), 825–843 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yong, J.: Finding adapted solutions of forward-backward stochastic differential equations-method of continuation. Probab. Theory Relat. Fields 107, 537–572 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Peng, S., Shi, Y.: Infinite horizon forward-backward stochastic differential equations. Stoch. Process. Appl. 85, 75–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Antonelli, F., Barucci, E., Mancino, M.E.: Asset pricing with a forward-backward stochastic differential utility. Econ. Lett. 72, 151–157 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duffie, D., Epstein, L.: Asset pricing with stochastic differential utilities. Rev. Financial Stud. 5(3), 411–436 (1992)

    Article  Google Scholar 

  9. Yong, J.: A leader-follower stochastic linear quadratic differential game. SIAM J. Control Optim. 41, 1015–1041 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Williams, N.: On dynamic principal-agent problems in continuous time. Working paper. (2008).

  11. Meng, Q.: A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information. Sci. China Math. 52, 1579–1588 (2009)

    Article  MATH  Google Scholar 

  12. Øksendal, B., Sulem, A.: Maximum principles for optimal control of forward-backward stochastic differential equations with jumps. SIAM J. Control Optim. 48, 2945–2976 (2009)

    Article  MathSciNet  Google Scholar 

  13. Shi, J., Wu, Z.: Maximum principle for forward-backward stochastic control system with random jumps and applications to finance. J. Syst. Sci. Complex. 23(2), 219–231 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Agram, N., Øksendal, B.: Infinite horizon optimal control of forward-backward stochastic differential equations with delay. J. Comput. Appl. Math. doi:10.1016/j.cam.2013.04.048 (2013)

  15. Li, J., Wei, Q.: Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton–Jacobi–Bellman equations. SIAM J. Control Optim. 52(3), 1622–1622 (2014)

  16. Bensoussan, A., Chutani, A., Sethi, S.P.: Optimal cash management under uncertainty. Oper. Res. Lett. 37, 425–429 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, G., Wu, Z., Xiong, J.: Maximum principles for forward-backward stochastic control systems with correlated state and observation noises. SIAM J. Control Optim. 51(1), 491–524 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Peng, S.: Backward stochastic differential equations, nonlinear expectations and risk measures, Lectures in Chinese Summer School in Mathematics. Shandong University at Weihai, Shandong (2004)

  19. Rosazza-Gianin, E.: Risk measures via g-expectations. Insur. Math. Econ. 39, 19–34 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xiong, J.: An Introduction to Stochastic Filtering Theory. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (11371228, 11201263), the Research Fund for the Taishan Scholar Project of Shandong Province of China, the Program for New Century Excellent Talents in University of China (NCET-12-0338), the Natural Science Foundation of Shandong Province of China (ZR2012AQ004, BS2011SF010), and the Postdoctoral Science Foundation of China (2013M540540). The authors would like to thank two anonymous referees for their constructive and insightful comments for improving the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xiao.

Additional information

Communicated by Francesco Zirilli.

Appendix

Appendix

Proof of Theorem 2.1 For any \(v(\cdot )\in \mathcal U_{ad}\), we consider

$$\begin{aligned} J(v(\cdot ))-J(u(\cdot ))=I_1+I_2+I_3 \end{aligned}$$
(23)

with

$$\begin{aligned} I_1:=&\ \phi (y^v(0))-\phi (y(0)), \quad I_2:=\text {l}\!\text {E}[\psi (x^v(T))-\psi (x(T))],\\ I_3:=&\ \text {l}\!\text {E}\int _0^T\left( l(t, v(t))-l(t)\right) \mathrm{{d}}t. \end{aligned}$$

Recall that \(\phi \) is convex in \(y\) and \(p(0)=-\phi _y(y(0))\). Applying Itô’s formula to \(\langle p(\cdot ), y^v(\cdot )-y(\cdot )\rangle \), we get

$$\begin{aligned} I_1&\ge -p^\top (0)(y^v(0)-y(0))\nonumber \\&= -\text {l}\!\text {E}[p^\top (T)A(x^v(T)-x(T))]-\text {l}\!\text {E}\int _0^T\langle H_y(t), y^v(t)-y(t)\rangle \mathrm{{d}}t\nonumber \\&-\,\text {l}\!\text {E}\int _0^T\langle H_z(t), z^v(t)-z(t)\rangle \mathrm{{d}}t-\text {l}\!\text {E}\int _0^T\langle p(t), f(t, v(t))-f(t)\rangle \mathrm{{d}}t. \end{aligned}$$
(24)

Similarly,

$$\begin{aligned} I_2\ge \text {l}\!\text {E}[(q^\top (T)+p^\top (T)A)(x^v(T)-x(T))] \end{aligned}$$
(25)

with

$$\begin{aligned}&\text {l}\!\text {E}[q^\top (T)(x^v(T)-x(T))]\\&= \text {l}\!\text {E}\int _0^T\langle q(t), b(t, v(t))-b(t)\rangle \mathrm{{d}}t+\text {l}\!\text {E}\int _0^T\langle k(t), \sigma (t, v(t))-\sigma (t)\rangle \mathrm{{d}}t\\&-\,\text {l}\!\text {E}\int _0^T\langle H_x(t), x^v(t)-x(t)\rangle \mathrm{{d}}t. \end{aligned}$$

From (23)–(25) and \(I_3\), it is easy to see that

$$\begin{aligned} J(v(\cdot ))-J(u(\cdot ))&\ge \text {l}\!\text {E}\int _0^T \left( H(t, v(t))-H(t)\right) \mathrm{{d}}t-\text {l}\!\text {E}\int _0^T\langle H_x(t), x^v(t)-x(t)\rangle \mathrm{{d}}t\\&-\,\text {l}\!\text {E}\int _0^T\langle H_y(t), y^v(t)-y(t)\rangle \mathrm{{d}}t-\text {l}\!\text {E}\int _0^T\langle H_z(t), z^v(t)-z(t)\rangle \mathrm{{d}}t. \end{aligned}$$

Now we affirm that \(J(v(\cdot ))-J(u(\cdot ))\ge 0\) holds for any \(v(\cdot )\in \mathcal U_{ad}\).

The detailed proof of the affirmance is as follows. According to the minimum assumption, for any \((t, x, y, z)\),

$$\begin{aligned} \tilde{H}(t, x, y, z)-\tilde{H}(t, x(t), y(t), z(t))\le H(t, x, y, z, v, p(t), q(t), k(t))-H(t).\qquad \end{aligned}$$
(26)

Hence, it suffices to show that

$$\begin{aligned}&\tilde{H}(t, x, y, z)-\tilde{H}(t, x(t), y(t), z(t))\nonumber \\&\ge \langle H_x(t), x-x(t)\rangle +\langle H_y(t), y-y(t)\rangle +\langle H_z(t), z-z(t)\rangle . \end{aligned}$$
(27)

Fix \(t\in [0, T]\). Since \(\tilde{H}(t, x, y, z)\) is convex in \((x, y, z)\), there exist \(a(t)\), \(b(t)\in \text {l}\!\text {R}^n\) and \(c(t)\in \text {l}\!\text {R}^{n\times m}\) such that

$$\begin{aligned} \tilde{H}(t, x, y, z)-\tilde{H}(t, x(t), y(t), z(t))&\ge \langle a(t), x-x(t)\rangle +\langle b(t), y-y(t)\rangle \nonumber \\&+\,\langle c(t), z-z(t)\rangle . \end{aligned}$$
(28)

Define

$$\begin{aligned} \varphi (t, x, y, z)&:= H(t, x, y, z, u(t), p(t), q(t), k(t))-H(t)\\&-\,\langle a(t), x-x(t)\rangle +\langle b(t), y-y(t)\rangle +\langle c(t), z-z(t)\rangle . \end{aligned}$$

Then, it follows from (26) and (28) that \(\varphi (t, x, y, z)\ge 0\) for all \((t, x, y, z)\). Moreover, \(\varphi (t, x(t), y(t), z(t))=0\). It implies that \((x(\cdot ), y(\cdot ), z(\cdot ))\) is a minimum point of \(\varphi \). Because \(\varphi \) is differentiable with respect to \((x, y, z)\), we have the partial derivatives

$$\begin{aligned} \varphi _x(t, x(t), y(t), z(t))=0, \quad \varphi _y(t, x(t), y(t), z(t))=0, \quad \varphi _z(t, x(t), y(t), z(t))=0, \end{aligned}$$

i.e., \(H_x(t)=a(t), H_y(t)=b(t), H_z(t)=c(t).\) Inserting them into (28), we derive (27), i.e., \(u(\cdot )\) is an optimal control. Then, the proof is complete. \(\Box \)

Proof of Theorem 3.1 For any \(v(\cdot )\in \mathcal V_{ad}[0, \infty [\), we write

$$\begin{aligned} J(v(\cdot ))-J(u(\cdot ))=I_1+I_2 \end{aligned}$$
(29)

with

$$\begin{aligned} I_1:=\phi (y^v(0))-\phi (y(0)),\quad I_2:=\text {l}\!\text {E}\int _0^\infty \left( l(t, v(t))-l(t)\right) \mathrm{{d}}t. \end{aligned}$$

Noting the convexity of \(\phi \) and applying Itô’s formula to \(\langle p(\cdot ), y^v(\cdot )-y(\cdot )\rangle \), we have

$$\begin{aligned} I_1&\ge -p^\top (0)(y^v(0)-y(0))\nonumber \\&= -\text {l}\!\text {E}\int _0^\infty \langle H_y(t), y^v(t)-y(t)\rangle \mathrm{{d}}t-\text {l}\!\text {E}\int _0^\infty \langle H_z(t), z^v(t)-z(t)\rangle \mathrm{{d}}t\nonumber \\&-\,\text {l}\!\text {E}\int _0^\infty \langle p(t), f(t, v(t))-f(t))\rangle \mathrm{{d}}t. \end{aligned}$$
(30)

Similarly, it follows from the transversality condition that

$$\begin{aligned} 0&\ge \liminf _{T\uparrow \infty }\text {l}\!\text {E}[q^\top (T)(x^v(T)-x(T))]\nonumber \\&= \text {l}\!\text {E}\int _0^\infty \langle q(t), b(t, v(t))-b(t)\rangle \mathrm{{d}}t+\text {l}\!\text {E}\int _0^\infty \langle k(t), \sigma (t, v(t))-\sigma (t)\rangle \mathrm{{d}}t\nonumber \\&-\,\text {l}\!\text {E}\int _0^\infty \langle H_x(t), x^v(t)-x(t)\rangle \mathrm{{d}}t. \end{aligned}$$
(31)

Similar to the proof of Theorem 2.1, it is easy to see from (29), (30), (31), and \(I_2\) that

$$\begin{aligned} J(v(\cdot ))-J(u(\cdot ))&\ge \text {l}\!\text {E}\int _0^\infty \left( H(t, v(t))-H(t)\right) \mathrm{{d}}t-\text {l}\!\text {E}\int _0^\infty \langle H_x(t), x^v(t)-x(t)\rangle \mathrm{{d}}t\\&-\,\text {l}\!\text {E}\int _0^\infty \langle H_y(t), y^v(t)\!-\!y(t)\rangle \mathrm{{d}}t-\!\text {l}\!\text {E}\int _0^\infty \langle H_z(t), z^v(t)\!-\!z(t)\rangle \mathrm{{d}}t\\&\ge \text {l}\!\text {E}\int _0^\infty \langle H_v(t), v(t)-u(t)\rangle \mathrm{{d}}t. \end{aligned}$$

Furthermore, using the minimum condition in Theorem 3.1, we get

$$\begin{aligned} 0&\le \ \Big (\frac{\partial }{\partial v}\text {l}\!\text {E}[H\Big (t, x(t), y(t), z(t), u(t), p(t), q(t), k(t)\Big )|\mathcal G_t]\Big )^\top (v-u(t))\\&= \ \text {l}\!\text {E}[H_v(t)^\top (v-u(t))|\mathcal G_t]. \end{aligned}$$

This implies that \(J(u(\cdot ))=\min _{v(\cdot )\in \mathcal V_{ad}[0, \infty [}J(v(\cdot ))\). Then, the proof is complete. \(\Box \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xiao, H. Arrow Sufficient Conditions for Optimality of Fully Coupled Forward–Backward Stochastic Differential Equations with Applications to Finance. J Optim Theory Appl 165, 639–656 (2015). https://doi.org/10.1007/s10957-014-0625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0625-4

Keywords

Mathematics Subject Classification

Navigation