Skip to main content

Advertisement

Log in

Optimal Control of Production, Remanufacturing and Refurbishing Activities in a Finite Planning Horizon Inventory System

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, an inventory system with production, remanufacturing and refurbishing activities is studied, over a finite planning horizon. The demand is assumed time varying. Used products are returned by customers, and after inspection, they can be classified either as “remanufacturable” or as “refurbishable” items. The remanufacturing process brings “remanufacturable” items up to quality standards that are as rigorous as those of new items. The refurbished items are sold to a secondary market at a reduced price. In order to control the system, two types of policies are considered. For these two policies, a procedure is proposed that determines the order and remanufacturing quantities and the inventory level of returned (used) items at the start of the inspection and recovery processes, which minimize the total costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schrady, D.A.: A deterministic inventory model for repairable items. Nav. Res. Logist. Q. 14(3), 391–398 (1967)

    Article  Google Scholar 

  2. Richter, K.: Pure and mixed strategies for the EOQ repair and waste disposal problem. Oper. Res. Spektrum 19(2), 123–129 (1997)

    Article  MATH  Google Scholar 

  3. Dobos, I., Richter, K.: An extended production/recycling model with stationary demand and return rates. Int. J. Prod. Econ. 90(3), 311–323 (2004)

    Article  Google Scholar 

  4. Teunter, R.H.: Economic ordering quantities for recoverable item inventory system. Nav. Res. Logist. 48(6), 484–495 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Teunter, R.H.: Lot-sizing for inventory systems with product recovery. Comput. Ind. Eng. 46(3), 431–441 (2004)

    Article  Google Scholar 

  6. Konstantaras, I., Papachristos, S.: A note on: developing an exact solution for an inventory system with product recovery. Int. J. Prod. Econ. 111(2), 707–712 (2008)

    Article  Google Scholar 

  7. Konstantaras, I., Papachristos, S.: Lotsizing for a single product recovery system with backordering. Int. J. Prod. Res. 44(10), 2031–2045 (2006)

    Article  MATH  Google Scholar 

  8. El-Saadany, A.M.A., Jaber, M.Y.: A production/remanufacture model with returns subassemblies managed differently. Int. J. Prod. Econ. 133(1), 119–126 (2011)

    Article  Google Scholar 

  9. Konstantaras, I., Skouri, K.: Lot sizing for a single product recovery system with variable setup numbers. Eur. J. Oper. Res. 203(2), 326–335 (2010)

    Article  MATH  Google Scholar 

  10. Yuan, K.F., Gao, Y.: Inventory decisionmaking models for a closedloop supply chain system. Int. J. Prod. Res. 48(20), 6155–6187 (2010)

    Article  MATH  Google Scholar 

  11. Liu, N., Kim, Y., Hwang, H.: An optimal operating policy for the production system with rework. Comput. Ind. Eng. 56(3), 874–887 (2009)

    Article  Google Scholar 

  12. Omar, M., Yeo, I.: A model for a production–repair system under a time-varying demand process. Int. J. Prod. Econ. 119(1), 17–23 (2009)

    Article  Google Scholar 

  13. Fleischmann, M., Krikke, H.R., Dekker, R., Flapper, S.D.: A characterisation of logistics networks for product recovery. Omega: Int. J. Manag. Sci. 28(6), 653–666 (2000)

    Article  Google Scholar 

  14. Loomba, A.P.S., Nakashima, K.: Enhancing value in reverse supply chains by sorting before product recovery. Prod. Plan. Control 23(23), 205215 (2012)

    Google Scholar 

  15. Konstantaras, I., Skouri, K., Jaber, M.Y.: Lot sizing for a recoverable product with inspection and sorting. Comput. Ind. Eng. 58(3), 452–462 (2010)

    Article  Google Scholar 

  16. Al-Khamis, T.M., Benkherouf, L., Omar, M.A.: Optimal policies for a finite-horizon batching inventory model. Int. J. Syst. Sci. 45(10), 2196–2202 (2014)

    Article  MathSciNet  Google Scholar 

  17. Henery, R.J.: Inventory replenishment policy for increasing demand. J. Oper. Res. Soc. 30(7), 611–617 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Skouri, K., Papachristos, S.: A continuous review inventory model, with deteriorating items, timevarying demand, linear replenishment cost, partially time-varying backlogging. Appl. Math. Model. 26(5), 603–617 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benkherouf, L., Gilding, B.H.: On a class of optimization problems for finite time horizon models. SIAM J. Control Optim. 48(2), 993–1030 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Omar, M., Smith, D.K.: An optimal batch size for a production system under linearly increasing-time varying demand process. Comput. Ind. Eng. 42(1), 35–42 (2002)

    Article  Google Scholar 

  21. El-Saadany, A.M.A., Jaber, M.Y.: A production/remanufacturing inventory model with price and quality dependant return rate. Comput. Ind. Eng. 58(3), 352–362 (2010)

    Article  Google Scholar 

  22. Pinedo, M.L.: Scheduling, Algorithms and Systems. Springer, NewYork (2012)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the two anonymous reviewers for their critical and very constructive comments. A part of this work was done during a visit of Lakdere Benkherouf to the university of Ioannina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Konstantaras.

Additional information

Communicated by Jamal Ouenniche.

Appendix

Appendix

Firstly, we calculate the area under \(I_{1}(t)\) [see (27) and (30)] on the interval \(t_{i-1}\le t\le t_{i}\) which help for the derivation of holding cost for used products:

$$\begin{aligned}&\varphi \int _{t_{i-1}}^{t_{i}^{p}}\int _{t_{i-1}}^{t}D(y)\hbox {d}y\hbox {d}t+\int _{t_{i}^{p} }^{t_{i}}\left[ -\int _{t}^{t_{i}}\{\varphi D(y)-p\}\hbox {d}y+\varphi q\int _{t_{i-1} }^{t_{i}}D(y)\hbox {d}y\right] \hbox {d}t \\&\quad =\varphi \int _{t_{i-1}}^{t_{i}^{p}}\left( t_{i}^{p}-t\right) D(t)\hbox {d}t+\int _{t_{i}^{p} }^{t_{i}}(t-t_{i}^{p})\{p-\varphi D(t)\}\hbox {d}t +\varphi q\left( t_{i}-t_{i}^{p}\right) \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t \\&\quad =\varphi \int _{t_{i-1}}^{t_{i}}(t_{i}-t)D(t)\hbox {d}t-\varphi \left( t_{i}-t_{i}^{p}\right) \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t+p\frac{\left( t_{i}-t_{i}^{p}\right) ^{2}}{2}\\&\qquad +\varphi q\left( t_{i}-t_{i}^{p}\right) \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t \\&\quad =\varphi \int _{t_{i-1}}^{t_{i}}(t_{i}-t)D(t)\hbox {d}t-\varphi (1-q)\left( t_{i}-t_{i}^{p}\right) \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t +p\frac{\left( t_{i}-t_{i}^{p}\right) ^{2}}{2}\,\text {(using (31))}\\&\quad =\varphi \int _{t_{i-1}}^{t_{i}}(t_{i}-t)D(t)\hbox {d}t-\frac{\varphi ^{2}(1-q)^{2} }{ 2p}\left\{ \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t\right\} ^{2}. \end{aligned}$$

If \(\varDelta _1\) denotes the area under the function \(I_1(t)\) from time 0 to H, then it follows that

$$\begin{aligned} \varDelta _1 := \sum _{i=1}^{n_1} \varphi \int _{t_{i-1}}^{t_{i}}(t_{i}-t)D(t)\hbox {d}t-\frac{ \varphi ^{2}(1-q)^{2} }{2p}\left\{ \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t\right\} ^{2} \end{aligned}$$
(60)

For the area under \(I_{2}(t)\) on the interval \(t_{i-1}\le t\le t_{i}\), we obtain using (33) and (35):

$$\begin{aligned}&\int _{t_{i-1}}^{t_{i}^{p}}\left\{ -\int _{t_{i-1}}^{t}D(y)\hbox {d}y+L_{i}\right\} \hbox {d}t +\int _{{t_i}^p}^{t_{i}}\left[ \int _{{t_i}^p}^{t}\{p-D(y)\}\hbox {d}y-\int _{t_{i-1}}^{t_{i}^{p}}D(y)\hbox {d}y+L_{i}\right] \hbox {d}t \nonumber \\&\quad =-\int _{t_{i-1}}^{t_{i}^{p}}(t_{i}^{p}-t)D(t)\hbox {d}t\nonumber \\&\qquad + \int _{{t_i}^p}^{t_{i}} (t_{i}-t)\{p-D(t)\}\hbox {d}t -(t_i-t_i^p)\int _{t_{i-1}}^{t_{i}^{p}}D(t)\hbox {d}t+(t_{i}-t_{i-1}) L_{i} \nonumber \\&\quad =\int _{t_{i-1}}^{t_{i}}(t-t_{i})D(t)\hbox {d}t+p\frac{(t_{i}-t_{i}^{p})^{2}}{2} +(t_{i}-t_{i-1})L_{i} \nonumber \\&\quad =\int _{t_{i-1}}^{t_{i}}(t-t_{i})D(t)\hbox {d}t+\frac{\varphi ^{2}(1-q)^{2}}{2p} \left\{ \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t\right\} ^{2}+(t_{i}-t_{i-1})L_{i}. \end{aligned}$$
(61)

Next, we compute the quantity \(\sum _{i=1}^{n_{1}-1}(t_{i}-t_{i-1})L_{i}\). This is equal to:

$$\begin{aligned}&=\sum _{i=1}^{n_{1}-2}t_{i}(L_{i}-L_{i+1})+t_{n_{1}-1}L_{n_{1} -1} \nonumber \\&=\left\{ 1-\varphi (1-q)\right\} \sum _{i=1}^{n_{1}-2}t_{i}\int _{t_{i-1} }^{t_{i}}D(t)\hbox {d}t\nonumber \\&\quad +t_{n_{1}-1}\left[ L_{1}-\left\{ 1-\varphi (1-q)\right\} \int _{0} ^{t_{n_{1}-2}}D(t)\hbox {d}t\right] \; \text {(by 38)} \nonumber \\&=\left\{ 1-\varphi (1-q)\right\} \sum _{i=1}^{n_{1}-1}t_{i}\int _{t_{i-1} }^{t_{i}}D(t)\hbox {d}t + t_{n_1-1} \int _{t_{n_1-1}}^{t_{n_1}^p}D(t)\hbox {d}t \; \; \text {(by 37)}. \end{aligned}$$
(62)

If \(\varDelta _2\) denotes the area under the function \(I_2(t)\) from 0 to H, then it follows from (61) to (62) that \(\varDelta _2:=\)

$$\begin{aligned}&\sum _{i=1}^{n_1-1} \left[ \int _{t_{i-1}}^{t_{i}}(t-t_{i})D(t)\hbox {d}t + \frac{\varphi ^{2}(1-q)^{2}}{2p}\left\{ \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t\right\} ^{2} \right] \nonumber \\&\quad +\left\{ 1-\varphi (1-q)\right\} \sum _{i=1}^{n_{1}-1}t_{i}\int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t \nonumber \\&\quad + t_{n_1-1} \int _{t_{n_1-1}}^{t_{n_1}^p}D(t)\hbox {d}t +\int _{t_{n_1-1}}^{t_{n_1}^p}(t-t_{n_1-1})D(t)\hbox {d}t + \int _{{t_n^p}}^H (H-t)\{ p-D(t)\}\hbox {d}t. \end{aligned}$$
(63)

The last two terms of the equation refer to the area in the last period. Finally, we get \(\varDelta _2=\)

$$\begin{aligned}&\sum _{i=1}^{n_{1}-1} \left[ \int _{t_{i-1}}^{t_{i}}(t-t_{i})D(t)\hbox {d}t+ \frac{\varphi ^{2}(1-q)^{2}}{2p}\left\{ \int _{t_{i-1}}^{t_{i}}D(t)\hbox {d}t\right\} ^{2} \right] \nonumber \\&\quad +\left\{ 1-\varphi (1-q)\right\} \sum _{i=1}^{n_{1}-1}t_{i}\int _{t_{i-1} }^{t_{i}}D(t)\hbox {d}t \nonumber \\&\quad +\int _{t_{n_{1}-1}}^{t_{n_1}^p}tD(t)\hbox {d}t + \int _{{t_{n_{1}}^p}}^H (H-t)\{ (p-D(t)\}\hbox {d}t. \end{aligned}$$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkherouf, L., Skouri, K. & Konstantaras, I. Optimal Control of Production, Remanufacturing and Refurbishing Activities in a Finite Planning Horizon Inventory System. J Optim Theory Appl 168, 677–698 (2016). https://doi.org/10.1007/s10957-015-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0741-9

Keywords

Mathematics Subject Classification

Navigation