Skip to main content
Log in

Homoclinic Orbits for a Class of Fractional Hamiltonian Systems via Variational Methods

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is devoted to the existence and multiplicity of homoclinic orbits for a class of fractional-order Hamiltonian systems with left and right Liouville–Weyl fractional derivatives. Here, we present a new approach via variational methods and critical point theory to obtain sufficient conditions under which the Hamiltonian system has at least one homoclinic orbit or multiple homoclinic orbits. Some results are new even for second-order Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabinowitz, P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. Sect. A 114, 33–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Paturel, E.: Multiple homoclinic orbits for a class of Hamiltonian systems. Calc. Var. Partial Differ. Equ. 12, 117–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Coti Zelati, V.: Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. Padova 89, 177–194 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Zou, W., Li, S.J.: Infinitely many solutions for Hamiltonian systems. J. Differ. Equ. 186, 141–164 (2002)

    Article  MathSciNet  Google Scholar 

  5. Ding, Y., Jeanjean, L.: Homoclinic orbits for a nonperiodic Hamiltonian system. J. Differ. Equ. 237, 473–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Makita, P.D.: Homoclinic orbits for second order Hamiltonian equations in R. J. Dyn. Differ. Equ. 24, 857–871 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integr. Equ. 5, 1115–1120 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  11. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  13. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  14. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imp. Coll. Press, London (2012)

    Book  MATH  Google Scholar 

  16. Zhou, Y., Jiao, F., Pecaric, J.: Abstract Cauchy problem for fractional functional differential equations. Topol. Methods Nonlinear Anal. 42(1), 119–136 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolutions. J. Integr. Equ. Appl. 25, 557–586 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4, 507–524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, Y.: Control and optimization of fractional systems. J. Optim. Theory Appl. 156(1), 1–182 (2013)

    Article  Google Scholar 

  20. Zhou, Y., Shen, X.H., Zhang, L.: Cauchy problem for fractional evolution equations with Caputo derivative. Eur. Phys. J. Spec. Top. 222, 1747–1764 (2013)

    Google Scholar 

  21. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rep. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  22. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002)

    Article  MATH  Google Scholar 

  23. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Baleanu, D., Golmankaneh, A.K.: The dual action of fractional multi time Hamilton equations. Int. J. Theor. Phys. 48, 2558–2569 (2009)

    Article  MATH  Google Scholar 

  26. Torres, C.: Existence of solution for a class of fractional Hamiltonian systems. Electron. J. Differ. Equ. 259, 1–12 (2013)

    Google Scholar 

  27. Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. Gen. 38, 5929–5943 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22(4), 1–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society, Providence (1986)

    Book  MATH  Google Scholar 

  30. Stuart, C.: Bifurcation into Spectral Gaps. Société Mathématique de Belgique (1995)

  31. Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integr. Equ. 5(5), 1115–1120 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Project supported by National Natural Science Foundation of P. R. China (11271309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyamoradi, N., Zhou, Y. Homoclinic Orbits for a Class of Fractional Hamiltonian Systems via Variational Methods. J Optim Theory Appl 174, 210–222 (2017). https://doi.org/10.1007/s10957-016-0864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0864-7

Keywords

Mathematics Subject Classification

Navigation