Skip to main content
Log in

Cognitive Design of Radar Waveform and the Receive Filter for Multitarget Parameter Estimation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This research work considers waveform design for an adaptive radar system. The aim is to achieve enhanced feature extraction performance for multiple extended targets. There are two scenarios to consider: multiple extended targets separated in range and multiple extended targets close in range. We propose a waveform optimization scheme based on Kalman filtering by minimizing the mean square error of separated target scattering coefficient estimation and a waveform optimization approach by minimizing the mean square error of closed power spectrum density estimation. A convex cost function is established, and the optimal solution can be obtained using the existing convex programming algorithm. With subsequent iterations of the algorithm, the simulation results demonstrate an improvement in the estimation of target parameters from the dynamic scene, such as target scattering coefficient and power spectrum density, while maintaining relatively lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haykin, S.: Cognitive radar: “a way of the future”. IEEE Signal Process. Mag. 23(1), 30–40 (2006)

    Article  Google Scholar 

  2. Haykin, S.: Cognitive Dynamic Systems: Perception-Action Cycle, Radar and Radio. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  3. Farina, A., De Maio, A., Haykin, S.: The Impact of Cognition on Radar Technology. Scitech Publishing, IET (2017)

    Book  Google Scholar 

  4. Aubry, A., Demaio, A., Farina, A., Wicks, M.: Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter. IEEE Trans. Aerosp. Electron. Syst. 49(1), 93–117 (2013)

    Article  Google Scholar 

  5. Zhang, J.D., Zhu, D.Y., Zhang, G.: Adaptive compressed sensing radar oriented toward cognitive detection in dynamic sparse target scene. IEEE Trans. Signal Process. 60(4), 1718–1729 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Patton, L.K., Frost, S.W., Rigling, B.D.: Efficient design of radar waveforms for optimized detection in colored noise. IET Radar Sonar Navig. 6(1), 21–29 (2012)

    Article  Google Scholar 

  7. Romero, R.A., Goodman, N.A.: Waveform design in signal-dependent interference and application to target recognition with multiple transmissions. IET Radar Sonar Navig. 3(4), 328–340 (2009)

    Article  Google Scholar 

  8. Gong, X.H., Meng, H.D., Wei, Y.M., Wang, X.Q.: Phase-modulated waveform design for extended target detection in the presence of clutter. Sensors 11(7), 7162–7177 (2011)

    Article  Google Scholar 

  9. Aubry, A., Carotenuto, V., Maio, A.D.: Optimization theory-based radar waveform design for spectrally dense environments. IEEE Aerosp. Electron. Syst. Mag. 31(12), 14–25 (2017)

    Article  Google Scholar 

  10. Aubry, A., De Maio, A., Naghsh, M.M.: Optimizing radar waveform and Doppler filter bank via generalized fractional programming. IEEE J. Sel. Top. Signal Process. 9(8), 1387–1399 (2015)

    Article  Google Scholar 

  11. Karbasi, S.M., Aubry, A., Carotenuto, V., Naghsh, M.M., Bastani, M.H.: Knowledge-based design of space-time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference. IET Radar Sonar Navig. 9(8), 1124–1135 (2015)

    Article  Google Scholar 

  12. Aubry, A., De Maio, A., Piezzo, M., Farina, A.: Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization. IEEE Trans. Aerosp. Electron. Syst. 50(2), 1138–1152 (2014)

    Article  Google Scholar 

  13. Chen, C.Y., Vaidyanathan, P.: MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 57(9), 3533–3544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, P., Wu, L.: System optimization for temporal correlated cognitive radar with EBPSK-based MCPC signal. Math. Probl. Eng. 2015(1), 302083 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Kerahroodi, M.A., Aubry, A., De Maio, A., Naghsh, M.M.: A coordinate-descent framework to design low PSL/ISL sequences. IEEE Trans. Signal Process. 65(22), 5942–5956 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bell, M.R.: Information theory and radar waveform design. IEEE Trans. Inf. Theory 39(12), 1578–1597 (1993)

    Article  MATH  Google Scholar 

  17. Garren, D.A., Odom, A.C., Osborn, M.K., Goldstein, J.S.: Full-polarization matched-illumination for target detection and identification. IEEE Trans. Aerosp. Electron. Syst. 38(3), 824–837 (2002)

    Article  Google Scholar 

  18. Piezzo, M., Aubry, A., Buzzi, S., De Maio, A., Farina, A.: Non-cooperative code design in radar networks: a game-theoretic approach. EURASIP J. Adv. Signal Process. 63(1), 2013 (2013)

    Google Scholar 

  19. Deng, X., Qiu, C., Cao, Z., Morelande, M., Moran, B.: Waveform design for enhanced detection of extended target in signal-dependent interference. IET Radar Sonar Navig. 6(1), 30–38 (2012)

    Article  Google Scholar 

  20. Goodman, N.A., Venkata, P.R., Neifeld, M.A.: Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors. IEEE J. Sel. Top. Signal Process. 1(1), 105–213 (2007)

    Article  Google Scholar 

  21. Calderbank, R., Howard, S., Moran, B.: Waveform diversity in radar signal processing. IEEE Signal Process. Mag. 26(1), 32–41 (2009)

    Article  Google Scholar 

  22. Aubry, A., Maio, A.D., Jiang, B., Zhang, S.Z.: Ambiguity function shaping for cognitive radar via complex quartic optimization. IEEE Trans. Signal Process. 61(22), 5603–5619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sen, S., Glover, C.W.: Optimal multicarrier phase-coded waveform design for detection of extended targets. In: Proceedings of the IEEE Radar Conference 2013, Ottawa, Canada, pp. 1–2 (2013)

  24. Haimovich, A.M., Blum, R.S., Cinimi, L.J.: MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 25(1), 116–129 (2008)

    Article  Google Scholar 

  25. Sen, S., Nehorai, A.: OFDM-MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Trans. Signal Process. 58(6), 3152–3162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maio, A.D., Lops, M.: Design principles of MIMO radar detectors. IEEE Trans. Aerosp. Electron. Syst. 43(1), 886–898 (2007)

    Article  Google Scholar 

  27. Karbasi, S.M., Aubry, A., Maio, A.D.: Robust transmit code and receive filter design for extended targets in clutter. IEEE Trans. Signal Process. 63(8), 1965–1976 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pillai, U., Youla, D.C., Oh, H.S., Guerci, J.R.: Optimum transmit–receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inf. Theory 46(2), 577–584 (2000)

    Article  MATH  Google Scholar 

  29. Yu, Y., Junhui, Z., Lenan, W.: Adaptive waveform design for MIMO radar-communication transceiver. Sensors 18(6), 1957–1968 (2018)

    Article  Google Scholar 

  30. Aubry, A., Maio, A.D., Piezzo, M., Farina, A., Wicks, M.: Cognitive design of the receive filter and transmitted phase code in reverberating environment. IET Radar Sonar Navig. 6(9), 822–833 (2012)

    Article  Google Scholar 

  31. Sen, S.: PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar. IEEE Trans. Geosci. Remote Sens. 52(6), 3658–3669 (2014)

    Article  Google Scholar 

  32. Luo, Z.Q., Ma, W.K., Anthony, M.C.S., Ye, Y.Y., Zhang, S.Z.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  33. Dai, F.Z., Liu, H.W., Wang, P.H., Xia, S.Z.: Adaptive waveform design for range-spread target tracking. Electron. Lett. 46(11), 793–796 (2010)

    Article  Google Scholar 

  34. Yang, Y., Rick, S.B.: MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 43(1), 330–343 (2007)

    Article  Google Scholar 

  35. Chen, P., Wu, L.: Waveform design for multiple extended targets in temporally correlated cognitive radar system. IET Radar Sonar Navig. 10(1), 398–410 (2015)

    Google Scholar 

  36. Cover, T.M., Thomas, J.: Elements of Information Theory. John Wiley & Sons, New York (2006)

    MATH  Google Scholar 

  37. Naghibi, T., Behnia, F.: MIMO radar waveform design in the presence of clutter. IEEE Trans. Aerosp. Electron. Syst. 47(2), 770–781 (2011)

    Article  Google Scholar 

  38. Jiu, B., Liu, H., Zhang, L., Wang, Y., Luo, T.: Wideband cognitive radar waveform optimization for joint target radar signature estimation and target detection. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1530–1546 (2015)

    Article  Google Scholar 

  39. Leshem, A., Naparstek, O., Nehorai, A.: Information theoretic adaptive radar waveform design for multiple extended targets. IEEE J. Sel. Top. Signal Process. 1(1), 42–55 (2007)

    Article  Google Scholar 

  40. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  41. Aubry, A., Maio, A.D., Foglia, G.: Diffuse multipath exploitation for adaptive radar detection. IEEE Trans. Signal Process. 63(5), 1268–1281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Aditya, S., Molisch, A.F., Behairy, H.M.: A survey on the impact of multipath on wideband time-of-arrival-based localization. Proc. IEEE 106(7), 1183–1203 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the national Natural Science Foundation of China (61761019, 61861017, 61861018, 61862024) and the Natural Science Foundation of Jiangxi Province (Jiangxi Province natural Science Fund) (20181BAB211014, 20181BAB211013), and Foundation of Jiangxi Educational Committee of China (GJJ170414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yao.

Additional information

Communicated by Jyh-Horng Chou.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendices

Appendix A: Derivation of the Probability Constraints in (12)

Since the true TSC is unknown, the estimate of TSC based on Kalman filtering is used to replace the true TSC to design the radar waveform. We assume that \( H_{1} \) and \( H_{0} \) are the presence and absence of a target, respectively. Then, the distribution of backscattered signals can be expressed as

$$ \begin{aligned} & \left. {{\mathbf{Y}}_{i} } \right|H_{0} \sim{\mathbf{N}}\left\{ {0,{\mathbf{C}}_{N} } \right\}, \\ & \left. {{\mathbf{Y}}_{i} } \right|H_{1} \sim{\mathbf{N}}\left\{ {{\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} ,{\mathbf{C}}_{N} } \right\}, \\ \end{aligned} $$
(31)

where \( {\hat{\mathbf{G}}}_{i} \) is the estimate of TSC. The likelihood estimation is

$$ \begin{aligned} & l\left( {{\mathbf{Y}}_{i}^{{}} } \right) = \frac{{{\mathbf{N}}\left\{ {{\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} ,{\mathbf{C}}_{N} } \right\}}}{{{\mathbf{N}}\left\{ {0,{\mathbf{C}}_{N} } \right\}}}\mathop { \lessgtr }\limits_{{H_{2} }}^{{H_{1} }} T \\ & \Leftrightarrow {\mathbf{Y}}_{i}^{H} {\mathbf{C}}_{N}^{ - 1} {\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} \mathop { \lessgtr }\limits_{{H_{2} }}^{{H_{1} }} T, \\ \end{aligned} $$
(32)

where \( T \) is the detection threshold. The false alarm probability of CFAR detection is

$$ \begin{aligned} P_{fa} & = P\left( {{\mathbf{W}}_{{}}^{H} {\mathbf{C}}_{N}^{ - 1} {\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} \ge T} \right) \\ & = Q\left( {T/\sqrt {\left( {{\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} } \right)^{H} {\mathbf{C}}_{N}^{ - 1} {\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} } } \right). \\ \end{aligned} $$
(33)

\( {\text{Q}}\left( . \right) \) is the Q-function. The detection threshold is \( T = Q^{ - 1} \left( {P_{fa} } \right)\sqrt {\left( {{\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} } \right)^{H} {\mathbf{C}}_{N}^{ - 1} {\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} } \). The probability of detection can be rewritten as

$$ \begin{aligned} P_{d} & = P\left( {\left( {{\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} + {\mathbf{W}}} \right)^{H} {\mathbf{C}}_{N}^{ - 1} {\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} \ge T} \right) \\ & = Q\left( {Q^{ - 1} \left( {P_{fa} } \right) - \sqrt {\left( {{\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} } \right)^{H} {\mathbf{C}}_{N}^{ - 1} {\mathbf{\rm Z}}_{i} {\hat{\mathbf{G}}}_{i} } } \right). \\ \end{aligned} $$
(34)

Since the Q-function describes a monotonically decreasing function, the expression \( P_{d} \ge \varepsilon \) can be rewritten as

$$ {\mathbf{\rm Z}}_{i}^{H} {\hat{\mathbf{G}}}_{i}^{H} {\mathbf{C}}_{N}^{ - 1} {\hat{\mathbf{G}}}_{i} {\mathbf{\rm Z}}_{i}^{{}} \ge \varepsilon^{'} . $$
(35)

Appendix B: Derivation of (26)

The estimation error of \( P_{{q_{j,i} }} \left( {f_{p} } \right) \) can be expressed as

$$ \begin{aligned} e\left( {f_{p} } \right) & = P_{{q_{j,i} }} \left( {f_{p} } \right) - \hat{P}_{{q_{j,i} }} \left( {f_{p} } \right) \\ & = \frac{{G_{C} \left( {f_{p} } \right) - \hat{P}_{C} \left( {f_{p} } \right) - 2\text{Re} \left( {\sqrt {\eta_{j} } Q_{j,i} \left( {f_{p} } \right)F_{i} \left( {f_{p} } \right)C\left( {f_{p} } \right)} \right)}}{{P_{{f_{i} }} \left( {f_{p} } \right)}}. \\ \end{aligned} $$
(36)

The MSE of the jth target PSD estimation at time \( i \) can be expressed by

$$ \begin{aligned} E\left( {\left\| {e\left( f \right)} \right\|_{2}^{2} } \right) & = \sum\limits_{p = 1}^{P} {E\left( {P_{{q_{j,i} }} \left( {f_{p} } \right) - \hat{P}_{{q_{j,i} }} \left( {f_{p} } \right)} \right)}^{2} \\ & = \sum\limits_{p = 1}^{P} {\frac{1}{{P_{{f_{i} }}^{2} \left( {f_{p} } \right)}}} E\left\{ {G_{C} \left( {f_{p} } \right) - \hat{P}_{C} \left( {f_{p} } \right) - 2\text{Re} \left( {\sqrt {\eta_{j} } Q_{j,i} \left( {f_{p} } \right)F_{i} \left( {f_{p} } \right)C\left( {f_{p} } \right)} \right)} \right\}^{2} \\ & { = }\sum\limits_{p = 1}^{P} {\frac{1}{{P_{{f_{i} }}^{2} \left( {f_{p} } \right)}}} E\left( \begin{aligned} \left({G_{C} \left( {f_{p} } \right) - \hat{P}_{C} \left( {f_{p} } \right)} \right)^{2} + 4\eta_{j} \left( {\text{Re} \left( {Q_{j,i} \left( {f_{p} } \right)F_{i} \left( {f_{p} } \right)C\left( {f_{p} } \right)} \right)} \right)^{2} \hfill \\ - 4\text{Re} \left( {\sqrt {\eta_{j} } Q_{j,i} \left( {f_{p} } \right)F_{i} \left( {f_{p} } \right)C\left( {f_{p} } \right)} \right)\left( {G_{C} \left( {f_{p} } \right) - \hat{P}_{C} \left( {f_{p} } \right)} \right) \hfill \\ \end{aligned} \right). \\ \end{aligned} $$
(37)

In (37), we have

$$ E\left( {\left( {G_{C} \left( {f_{p} } \right) - \hat{P}_{C} \left( {f_{p} } \right)} \right)^{2} } \right) = G_{C}^{2} \left( {f_{p} } \right). $$
(38)
$$ E\left( {\text{Re} \left( {Q_{j,i} \left( {f_{p} } \right)F_{i} \left( {f_{p} } \right)C\left( {f_{p} } \right)} \right)\left( {G_{C} \left( {f_{p} } \right) - \hat{P}_{C} \left( {f_{p} } \right)} \right)} \right) = 0. $$
(39)
$$ E\left( {4\eta_{j} \text{Re} \left( {Q_{j,i} \left( {f_{p} } \right)F_{i} \left( {f_{p} } \right)C\left( {f_{p} } \right)} \right)^{2} } \right) = 2\eta_{j} G_{C}^{{}} \left( {f_{p} } \right)P_{{q_{j,i} }}^{{}} \left( {f_{p} } \right)P_{{f_{i} }}^{{}} \left( {f_{p} } \right). $$
(40)

Substituting (38)–(40) into (37), we have

$$ E\left( {\left\| {e\left( f \right)} \right\|_{2}^{2} } \right) = \sum\limits_{p = 1}^{P} {\left[ {\frac{{G_{C}^{2} \left( {f_{p} } \right)}}{{P_{{f_{i} }}^{2} \left( {f_{p} } \right)}} + \frac{{2\eta_{j} G_{C} \left( {f_{p} } \right)P_{{q_{j,i} }}^{{}} \left( {f_{p} } \right)}}{{P_{{f_{i} }}^{{}} \left( {f_{p} } \right)}}} \right]} . $$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhao, J. & Wu, L. Cognitive Design of Radar Waveform and the Receive Filter for Multitarget Parameter Estimation. J Optim Theory Appl 181, 684–705 (2019). https://doi.org/10.1007/s10957-018-01466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-01466-8

Keywords

Mathematics Subject Classification

Navigation