Skip to main content
Log in

Moral Hazard Under Ambiguity

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we extend the classical Holmström and Milgrom contracting problem, by adding uncertainty on the volatility of the output for both the Agent and the Principal. We study more precisely the impact of the “Nature” playing against the Agent and the Principal, by choosing the worst possible volatility of the output. We solve the first-best and the second-best problems in this framework, and we show that optimal contracts are in a class of contracts linear with respect to the output and its quadratic variation. We also present a general modus operandi to apply our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We would like to thank one of the referees for suggesting this interpretation.

  2. We insist on the fact that if one does not want to assume such an axiom, this is not a problem for this part of our work, and one just has to keep working with the family \((W^{\mathbb {P}})_{{\mathbb {P}}\in {{\mathcal {P}}}_S}\). However, when defining the set of admissible contracts \({\mathfrak {C}}^{\mathrm{SB}}\) later in the paper, we will need it in order to define aggregated versions of stochastic integrals. If one does not want to use it, then it means that we have to restrict the control processes Z in \({\mathfrak {C}}^{\mathrm{SB}}\) to ones having sufficiently regular trajectories to apply the pathwise integration theory of Karandikar [38], for instance. By standard density results, it should, however, not change the value function of the Principal. Notice also that the continuum hypothesis is one among many axioms that can be used; see [36, Footnote 4] for the weakest known ones.

  3. Obviously, an extension of the present framework to model incorporating adverse selection, that is to say that the Principal does not actually know perfectly all the characteristics of the Agent, is not only interesting mathematically, but also from the point of view of applications. However, we believe that this would lead to a much more difficult problem and leave it for future research.

  4. He observes it in the risk-sharing problem of Sect. 3, but not in the moral hazard case of Sect. 4.

  5. This is why we call this model “adaptative”. Notice nonetheless that a higher degree of generality would require to consider a learning model, without assuming that (5) holds. In this case, as mentioned before, one would have to use a filtering procedure to update the estimates of the volatility model.

  6. Actually, our approach would also work in non-Markovian case, provided that one uses the recently developed theory of viscosity solutions for path-dependent PDEs, in a series of papers by Ekren, Keller, Ren, Touzi and Zhang [49,50,51]. We preferred to present our arguments in the Markovian case to avoid additional technicalities. See, however, Sect. 5 for a specific non-Markovian case.

  7. If the minimiser is not unique, then we assume as usual that the Principal has sufficient bargaining power to make the Agent choose the best minimiser for him. This means that one has also to take the supremum over all minimisers in the Hamiltonian above.

  8. One could argue that it suffices to use the same arguments as in [19] to obtain this result; however, their argument does not go through in this case, as we already explained earlier.

  9. Numerical schemes in the Markovian case are by now extremely well-known schemes for PPDEs have recently been considered by Zhang and Zhuo [61], and Ren and Tan [62].

  10. Well-posedness is clear here, since we have easily that \({{\mathcal {Y}}}^{{\mathbb {P}},a}_t=-\frac{1}{R_A}\log \left( -{\mathbb {E}}^{{\mathbb {P}}}\left[ {\mathcal {U}}_A\left. \left( \xi -\int _t^Tk(a_s)\mathrm{d}s\right) \right| {\mathcal {F}}_t\right] \right) ,\ {\mathbb {P}}-a.s.\)

  11. In this result, \(\xi \) and \(Y^a\) are assumed to be bounded, but the proof generalises easily to our setting where \(Y^a\) satisfies (44).

References

  1. Salanié, B.: The Economics of Contracts: A Primer. MIT Press, Cambridge (2005)

    Google Scholar 

  2. Carlier, G., Ekeland, I., Touzi, N.: Optimal derivatives design for mean-variance agents under adverse selection. Math. Financ. Econ. 1(1), 57–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cvitanić, J., Wan, X., Yang, H.: Dynamics of contract design with screening. Manag. Sci. 59(5), 1229–1244 (2013)

    Article  Google Scholar 

  4. Cvitanić, J., Zhang, J.: Optimal compensation with adverse selection and dynamic actions. Math. Financ. Econ. 1(1), 21–55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Holmström, B., Milgrom, P.: Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55(2), 303–328 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schättler, H., Sung, J.: The first-order approach to the continuous-time principal–agent problem with exponential utility. J. Econ. Theory 61(2), 331–371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sung, J.: Linearity with project selection and controllable diffusion rate in continuous-time principal–agent problems. Rand J. Econ. 26(4), 720–743 (1995)

    Article  Google Scholar 

  8. Williams, N.: On Dynamic Principal–Agent Problems in Continuous Time. University of Wisconsin, Madison (2009)

    Google Scholar 

  9. Cvitanić, J., Wan, X., Zhang, J.: Optimal contracts in continuous-time models. Int. J. Stoch. Anal. 2006, 095203 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Sannikov, Y.: A continuous-time version of the principal–agent problem. Rev. Econ. Stud. 75(3), 957–984 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biais, B., Mariotti, T., Rochet, J.C., Villeneuve, S.: Large risks, limited liability, and dynamic moral hazard. Econometrica 78(1), 73–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pagès, H., Possamaï, D.: A mathematical treatment of bank monitoring incentives. Finance Stoch. 18(1), 39–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Adrian, T., Westerfield, M.: Disagreement and learning in a dynamic contracting model. Rev. Financ. Stud. 22(10), 3873–3906 (2009)

    Article  Google Scholar 

  14. DeMarzo, P., Sannikov, Y.: Learning, Termination and Payout Policy in Dynamic Incentive Contracts. Stanford University, Stanford (2011)

    Google Scholar 

  15. Giat, Y., Subramanian, A.: Dynamic contracting under imperfect public information and asymmetric beliefs. J. Econ. Dyn. Control 37(12), 2833–2861 (2013)

    Article  MathSciNet  Google Scholar 

  16. Prat, J., Jovanovic, B.: Dynamic contracts when the agent’s quality is unknown. Theor. Econ. 9(3), 865–914 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ou-Yang, H.: An equilibrium model of asset pricing and moral hazard. Rev. Financ. Stud. 18(4), 1253–1303 (2005)

    Article  Google Scholar 

  18. Cvitanić, J., Possamaï, D., Touzi, N.: Moral hazard in dynamic risk management. Manage. Sci. 63(10), 3328–3346 (2017)

    Article  Google Scholar 

  19. Cvitanić, J., Possamaï, D., Touzi, N.: Dynamic programming approach to principal–agent problems. Finance Stoch. 22(1), 1–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spear, S., Srivastava, S.: On repeated moral hazard with discounting. Rev. Econ. Stud. 54(4), 599–617 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18(2), 141–153 (1989)

    Article  MATH  Google Scholar 

  22. Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Epstein, L., Ji, S.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 50, 269–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernández Santibáñez, N.: Contributions á la théorie d’agent principal et applications en économie. Ph.D. Thesis, Université Paris Dauphine and Universidad de Chile (2017)

  25. Sung, J.: Optimal Contracting Under Mean-Volatility Ambiguity Uncertainties. SSRN Preprint 2601174 (2015)

  26. Weinschenk, P.: Moral Hazard and Ambiguity. Bonn Graduate School of Economics, Bonn (2010)

    Google Scholar 

  27. Szydlowski, M.: Ambiguity in Dynamic Contracts. University of Minnesota, Minneapolis (2012)

    Google Scholar 

  28. Miao, J., Rivera, A.: Robust Contracts in Continuous Time. Boston University, Boston (2013)

    Google Scholar 

  29. Williams, N.: Persistent private information. Econometrica 79(4), 1233–1275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. He, Z., Wei, B., Yu, J.: Optimal Long-Term Contracting with Learning. University of Chicago, Chicago (2014)

    Google Scholar 

  31. Golosov, M., Troshkin, M., Tsyvinski, A.: Redistribution and social insurance. Am. Econ. Rev. 106(2), 359–386 (2016)

    Article  Google Scholar 

  32. Pavan, A., Segal, I., Toikka, J.: Dynamic Mechanism Design: Incentive Compatibility, Profit Maximization and Information Disclosure. Stanford University, Stanford (2009)

    Google Scholar 

  33. Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70(4), 1403–1443 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Epstein, L., Schneider, M.: Ambiguity, information quality, and asset pricing. J. Finance 63(1), 197–228 (2008)

    Article  Google Scholar 

  35. Soner, H., Touzi, N., Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields 153(1–2), 149–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Possamaï, D., Tan, X., Zhou, C.: Stochastic control for a class of nonlinear kernels and applications. ArXiv preprint arXiv:1510.08439 (2015)

  37. Mastrolia, T., Possamaï, D.: Moral Hazard Under Ambiguity. ArXiv preprint arXiv:1511.03616 (2015)

  38. Karandikar, R.: On pathwise stochastic integration. Stoch. Process. Appl. 57(1), 11–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Soner, H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(2), 1844–1879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nutz, M.: Pathwise construction of stochastic integrals. Electron. Commun. Probab. 17(24), 1–7 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Stroock, D., Varadhan, S.: Multidimensional Diffusion Processes, Grundlehren der mathematischen Wissenschaften, vol. 233. Springer, Berlin (1997)

    Google Scholar 

  42. Biagini, S., Bouchard, B., Kardaras, C., Nutz, M.: Robust fundamental theorem for continuous processes. Math. Finance 27(4), 963–987 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nutz, M.: Random \({G}\)-expectations. Ann. Appl. Probab. 23(5), 1755–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nutz, M., van Handel, R.: Constructing sublinear expectations on path space. Stoch. Process. Appl. 123(8), 3100–3121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rao, M., Ren, Z.: Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc., New York (1991)

    Google Scholar 

  46. Rao, M., Ren, Z.: Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250. Marcel Dekker Inc., New York (2002)

    Google Scholar 

  47. Coles, J., Daniel, N., Naveen, L.: Managerial incentives and risk-taking. J. Financ. Econ. 79(2), 431–468 (2006)

    Article  Google Scholar 

  48. Aïd, R., Possamaï, D., Touzi, N.: A Principal–Agent Model for Pricing Electricity Volatility Demand (2017) (preprint)

  49. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part I. Ann. Probab. 44(2), 1212–1253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part II. Ann. Probab. 44(4), 2507–2553 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ren, Z., Touzi, N., Zhang, J.: Comparison of Viscosity Solutions of Semi-linear Path-Dependent PDEs. ArXiv preprint arXiv:1410.7281 (2014)

  52. El Karoui, N., Tan, X.: Capacities, Measurable Selection and Dynamic Programming Part II: Application in Stochastic Control Problems. ArXiv preprint arXiv:1310.3364 (2013)

  53. Fleming, W., Souganidis, P.: On the existence of value-functions of 2-player, zero-sum stochastic differential-games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  54. Buckdahn, R., Li, J.: Stochastic differential games and viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations. SIAM J. Control Optim. 47(1), 444–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Bouchard, B., Moreau, L., Nutz, M.: Stochastic target games with controlled loss. Ann. Appl. Probab. 24(3), 899–934 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method and verification without smoothness using viscosity comparison: the linear case. Proc. Am. Math. Soc. 140(10), 3645–3654 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Bayraktar, E., Sîrbu, M.: Stochastic Perron’s method for Hamilton–Jacobi–Bellman equations. SIAM J. Control Optim. 51(6), 4274–4294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sîrbu, M.: Stochastic Perron’s method and elementary strategies for zero-sum differential games. SIAM J. Control Optim. 52(3), 1693–1711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Peng, S., Song, Y., Zhang, J.: A complete representation theorem for \({G}\)-martingales. Stoch. Int. J. Probab. Stoch. Process. 86(4), 609–631 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path dependent Bellman–Isaacs equation. SIAM J. Control Optim. 52(4), 2090–2121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang, J., Zhuo, J.: Monotone schemes for fully nonlinear parabolic path dependent PDEs. J. Financ. Eng. 1(1), 1450,005 (2014)

    Article  Google Scholar 

  62. Ren, Z., Tan, X.: On the convergence of monotone schemes for path-dependent PDE. Stoch. Process. Appl. 127(6), 1738–1762 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Neufeld, A., Nutz, M.: Superreplication under volatility uncertainty for measurable claims. Electron. J. Probab. 18(48), 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Possamaï, D.: Second order backward stochastic differential equations under a monotonicity condition. Stoch. Process. Appl. 123(5), 1521–1545 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Possamaï, D., Zhou, C.: Second order backward stochastic differential equations with quadratic growth. Stoch. Process. Appl. 123(10), 3770–3799 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Fields 141(3–4), 543–567 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. El Karoui, N., Quenez, M.C.: Programmation dynamique et évaluation des actifs contingents en marché incomplet. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 313(12), 851–854 (1991)

    MATH  Google Scholar 

  68. El Karoui, N., Quenez, M.C.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33(1), 29–66 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  69. Hamadène, S., Lepeltier, J.P.: Backward equations, stochastic control and zero-sum stochastic differential games. Stoch. Int. J. Probab. Stoch. Process. 54(3–4), 221–231 (1995)

    MathSciNet  MATH  Google Scholar 

  70. Matoussi, A., Possamaï, D., Zhou, C.: Robust utility maximization in nondominated models with 2BSDE: the uncertain volatility model. Math. Finance 25(2), 258–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors would like to thank an anonymous referee and the associate editor for their help in improving an earlier version of this paper. Thibaut Mastrolia gratefully acknowledges the Chair Financial Risks (Risk Foundation, sponsored by Société Générale) for financial support, and both authors acknowledge support from the ANR project PACMAN, ANR-16-CE05-0027. Part of this work was carried out while both authors were employed by Université Paris Dauphine, whose support is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Mastrolia.

Additional information

Nizar Touzi.

Appendix

Appendix

Proof of Proposition 4.1

Our fist step is to look at the dynamic version of the value function of the Agent. Fix some \(a\in {\mathcal {A}}\). We refer to the papers [44, 63] for the proofs that, for any \({{\mathcal {F}}}_T\)-measurable contract \(\xi \in {\mathcal {C}}\), one can define a process, which we denote by \(u_t^A(\xi ,a)\) (denoted by \(Y_t\) in [63]), which is càdlàg, \({\mathbb {G}}^{{{\mathcal {P}}}_A,+}\)-adapted (recall that for any \(a\in {\mathcal {A}}\), \({\mathbb {G}}^{{{\mathcal {P}}}^a_A}={\mathbb {G}}^{{{\mathcal {P}}}_A}\), since the polar sets of \({{\mathcal {P}}}^a_A\) are the same as the polar sets of \({{\mathcal {P}}}_A\)) and such that

$$\begin{aligned} u_t^A(\xi ,a)=\underset{{\mathbb {P}}^{'}\in {\mathcal {P}}^a_A({\mathbb {P}},t^+)}{\mathrm{essinf}^{\mathbb {P}}}\ {\mathbb {E}}^{{\mathbb {P}}^{'}}\bigg [{\mathcal {U}}_A\bigg (\xi -\int _t^Tk(a_s)\mathrm{d}s\bigg )\bigg |{\mathcal {F}}_t\bigg ],\ {\mathbb {P}}-a.s., \text { for all }{\mathbb {P}}\in {\mathcal {P}}^a_A.\nonumber \\ \end{aligned}$$
(43)

Notice that since \(\xi \in {\mathcal {C}}\), it has exponential moments of any order, so that since in addition the effort process a is bounded, we have that \(u^A(\xi ,a)\) has moments of any order, in the sense that

$$\begin{aligned} \underset{a\in {{\mathcal {A}}}}{\sup }\ \underset{{\mathbb {P}}\in {{\mathcal {P}}}^a_{{\mathcal {A}}}}{\sup }{\mathbb {E}}^{\mathbb {P}}\bigg [\underset{0\le t\le T}{\sup }\big |u_t^A(\xi ,a)\big |^p\bigg ]<+\infty ,\ \text {for all } p\ge 0, \end{aligned}$$
(44)

where we have used the generalised Doob inequality for sub-linear expectations given in Proposition A.1 in [64].

Moreover, by [63, step 2 in the proof of Theorem 2.3], \(e^{R_A\int _0^tk(a_s)\mathrm{d}s}u_t^A(\xi ,a)\) is a \(({\mathbb {P}}, {\mathbb {G}}^{{{\mathcal {P}}}_A,+})\)-sub-martingale for every \({\mathbb {P}}\in {\mathcal {P}}^a_A\), and by [63, step 3 in the proof of Theorem 2.3], there is a \({\mathbb {G}}^{{{\mathcal {P}}}_A}\)-predictable process \({\widetilde{Z}}\), and a family of non-decreasing and \({\mathbb {F}}^{\mathbb {P}}\)-predictable processes \(({\widetilde{K}}^{\mathbb {P}})_{{\mathbb {P}}\in {\mathcal {P}}^a_A}\), such that, \(\text {for all }{\mathbb {P}}\in {\mathcal {P}}^a_A\)

$$\begin{aligned} e^{R_A\int _0^tk(a_s)\mathrm{d}s}u_t^A(\xi ,a)=e^{R_A\int _0^Tk(a_s)\mathrm{d}s}{\mathcal {U}}_A(\xi )-\int _t^T{\widetilde{Z}}_s{{\widehat{\alpha }}}_s^{\frac{1}{2}}\mathrm{d}W^{a}_s-{\widetilde{K}}_T^{\mathbb {P}}+{\widetilde{K}}_t^{\mathbb {P}},\ {\mathbb {P}}-a.s. \end{aligned}$$

Notice also that since every probability measure in \({\mathcal {P}}_A\) is equivalent, by definition, to a probability measure in \({{\mathcal {P}}}^a_A\) (and conversely), the above also holds \({\mathbb {P}}-a.s.\), for any \({\mathbb {P}}\in {\mathcal {P}}_A\), with the convention that we will still denote by \({\widetilde{K}}^{\mathbb {P}}\) the non-decreasing process associated with \({\mathbb {P}}\in {{\mathcal {P}}}^a_A\) or \({{\mathcal {P}}}_A\). Moreover, using the aggregation result of [40], we can actually aggregate the family \({\widetilde{K}}^{\mathbb {P}}\) into a universal process, which is \({\mathbb {G}}^{{{\mathcal {P}}}_A}\)-predictable, and which we denote by \({\widetilde{K}}\).

Define

$$\begin{aligned} Y_t^a:= & {} -\frac{\ln \left( -u_t^A(\xi ,a)\right) }{R_A},\; Z^a_t:=-\frac{e^{-R_A\int _0^tk(a_s)\mathrm{d}s}}{R_Au_t(\xi ,a)}{\widetilde{Z}}_t,\; K_t^{a}\\:= & {} -\int _0^t\frac{e^{-R_A\int _0^sk(a_r)dr}}{R_Au^A_t(\xi ,a)}d{\widetilde{K}}_r. \end{aligned}$$

We have, after some computations, for all \({\mathbb {P}}\in {\mathcal {P}}_A\)

$$\begin{aligned} Y_t^a= & {} \xi -\int _t^T\left( \frac{R_A}{2}\left| Z_s^a\right| ^2{{\widehat{\alpha }}}_s+k(a_s)-a_sZ^a_s\right) \mathrm{d}s-\int _t^TZ_s^a{{\widehat{\alpha }}}_s^{1/2}\mathrm{d}W_s\\&-\int _t^T\mathrm{d}K_s^{a},\ {\mathbb {P}}-a.s. \end{aligned}$$

Now notice that by (44), we immediately have

$$\begin{aligned} \underset{a\in {{\mathcal {A}}}}{\sup }\ \underset{{\mathbb {P}}\in {{\mathcal {P}}}_A}{\sup }{\mathbb {E}}^{\mathbb {P}}\bigg [\exp \bigg (p\underset{0\le t\le T}{\sup }\left| Y_t^a\right| \bigg )\bigg ]<+\infty ,\ \text {for every } p\ge 0. \end{aligned}$$

Moreover, remember that by (43), we also have for every \({\mathbb {P}}\in {\mathcal {P}}^a_A\), by the exact same arguments as above applied under any fixed measure \({\mathbb {P}}\in {{\mathcal {P}}}_A\), that

$$\begin{aligned} Y_t^{a}=\underset{{\mathbb {P}}^{'}\in {\mathcal {P}}^a_A({\mathbb {P}},t^+)}{\mathrm{essinf}^{\mathbb {P}}}\ {{\mathcal {Y}}}^{{\mathbb {P}}^{'},a}_t,\ {\mathbb {P}}-a.s., \end{aligned}$$
(45)

where for any \({\mathbb {P}}\in {{\mathcal {P}}}_A^a\), \(({{\mathcal {Y}}}^{{\mathbb {P}},a}, {{\mathcal {Z}}}^{{\mathbb {P}},a})\) is the uniqueFootnote 10 solution to the following BSDE defined under \({\mathbb {P}}\)

$$\begin{aligned} {{\mathcal {Y}}}^{{\mathbb {P}},a}_t= & {} \xi -\int _t^T\left( \frac{R_A}{2}\left| {{\mathcal {Z}}}_s^{{\mathbb {P}},a}\right| ^2{{\widehat{\alpha }}}_s+k(a_s)-a_s{{\mathcal {Z}}}^{{\mathbb {P}},a}_s\right) \mathrm{d}s\\&-\int _t^T{{\mathcal {Z}}}_s^{{\mathbb {P}},a}{{\widehat{\alpha }}}_s^{1/2}\mathrm{d}W_s,\ {\mathbb {P}}-a.s. \end{aligned}$$

Then, using (44), we can follow the proof of Lemma 3.1 in [65]Footnote 11 to obtain that \(Z^a\) actually belongs to the BMO space defined in [65] (see Section 2.3.2). Then, we can follow exactly the proof of Theorem 6.1 in [65] to obtain with (45) that for any \({\mathbb {P}}\in {{\mathcal {P}}}_A^a\)

$$\begin{aligned} K_t^a=\underset{{\mathbb {P}}^{'}\in {\mathcal {P}}^a_A({\mathbb {P}},t^+)}{\mathrm{essinf}^{\mathbb {P}}}{\mathbb {E}}^{{\mathbb {P}}^{'}}\big [K_T^a\big |{\mathcal {F}}_t\big ],\ {\mathbb {P}}-a.s. \end{aligned}$$

Therefore, \((Y_t^a,Z^a_t)\) is the unique solution to the (quadratic linear) 2BSDE with terminal condition \(\xi \) and generator \(R_A/2z^2{{\widehat{\alpha }}}_s+k(a_s)-a_sz\) (see, for instance, Definition 2.3 of [65]).

The final step of the proof is now to relate the family \((Y^a)_{a\in {{\mathcal {A}}}}\) to the solution of the 2BSDE (18). Before proceeding, let us explain why the 2BSDE (18) does indeed admit a maximal solution. First of all, the corresponding quadratic BSDEs admit a maximal solution, because, since the infimum in the generator is over a compact set, the generator of the BSDE is bounded from above by a function with linear growth in z. The existence of a maximal solution is then direct from Proposition 4 of [66]. Furthermore, since this maximal solution is obtained as a monotone approximation of Lipschitz BSDEs, it satisfies a comparison theorem. Hence, we can apply first Proposition 2.1 of [36] to obtain the existence of a maximal solution of the 2BSDE, in the sense of Definition 4.1 of [36], and then use Remark 4.1 of [36] to aggregate the family of non-decreasing processes into K. (We remind the reader that all the measures in \({{\mathcal {P}}}_A\) satisfy the predictable martingale representation property.)

In particular, we have the following representation for any \({\mathbb {P}}\in {{\mathcal {P}}}_A\),

$$\begin{aligned} Y_t=\underset{{\mathbb {P}}^{'}\in {\mathcal {P}}^a_A({\mathbb {P}},t^+)}{\mathrm{essinf}^{\mathbb {P}}}\ {{\mathcal {Y}}}^{{\mathbb {P}}^{'}}_t,\ {\mathbb {P}}-a.s., \end{aligned}$$
(46)

where for any \({\mathbb {P}}\in {{\mathcal {P}}}_A^a\), \(({{\mathcal {Y}}}^{{\mathbb {P}}}, {{\mathcal {Z}}}^{{\mathbb {P}}})\) is the maximal solution of the quadratic BSDE

$$\begin{aligned} {{\mathcal {Y}}}_t^{\mathbb {P}}= & {} \xi -\int _t^T\left( \frac{R_A}{2}\left| {{\mathcal {Z}}}^{\mathbb {P}}_s\right| ^2{{\widehat{\alpha }}}_s+\underset{a\in [0,a_{\max }]}{\inf }\left\{ k(a)-a{{\mathcal {Z}}}^{\mathbb {P}}_s\right\} \right) \mathrm{d}s\\&-\int _t^T{{\mathcal {Z}}}^{\mathbb {P}}_s{{\widehat{\alpha }}}_s^{1/2}\mathrm{d}W_s,\ {\mathbb {P}}-a.s. \end{aligned}$$

Now it is a classical result dating back to [67,68,69] (see also [70] for a similar result using 2BSDEs) that, using the comparison theorem satisfied by the maximal solution of the 2BSDEs (which is automatically inherited from the one satisfied by the BSDEs)

$$\begin{aligned} Y_0=\underset{a\in {{\mathcal {A}}}}{\sup }\ Y_0^{a}= & {} \underset{a\in {{\mathcal {A}}}}{\sup }\ \underset{{\mathbb {P}}\in {\mathcal {P}}_A^a}{\inf }\ {{\mathcal {Y}}}^{{\mathbb {P}},a}_0\\= & {} \underset{a\in {{\mathcal {A}}}}{\sup }\ \underset{{\mathbb {P}}\in {\mathcal {P}}_A^a}{\inf }\left\{ -\frac{1}{R_A}\log \left( -{\mathbb {E}}^{{\mathbb {P}}}\left[ {\mathcal {U}}_A\left( \xi -\int _0^Tk(a_s)\mathrm{d}s\right) \right] \right) \right\} , \end{aligned}$$

so that \(U_0^A(\xi )=-\exp (-R_AY_0).\) Furthermore, it is then clear, since the function k is strictly convex that there is some \(a^\star (Z_\cdot )\in {{\mathcal {A}}}\) such that

$$\begin{aligned} \underset{a\in [0,a_{\max }]}{\inf }\left\{ k(a)-aZ_s\right\} = k(a^\star (Z_s))-a^\star (Z_s)Z_s, \; s\in [0,T]. \end{aligned}$$

This implies that \(Y_0=\underset{{\mathbb {P}}\in {\mathcal {P}}_A^{a^\star (Z_\cdot )}}{\inf }\ {{\mathcal {Y}}}^{{\mathbb {P}},a^\star (Z_\cdot )}_0.\) \(\square \)

Proof of Theorem 4.1

We recall Definition (42) for any \(\alpha \ge 0\)

$$\begin{aligned} z^\star (\alpha ):=\frac{1+k\alpha R_P}{1+\alpha k(R_A+R_P)}. \end{aligned}$$

We begin with the proof of (i). Assume that \( {\underline{\alpha }}^A\le {{\overline{\alpha }}}^P\le {\overline{\alpha }}^A\), then

$$\begin{aligned} {\underline{U}}^P_0\ge & {} \underset{{\mathbb {P}}\in {{\mathcal {P}}}_P^{a^\star (z^\star ({{\widehat{\alpha }}}_\cdot ))}}{\inf }{\mathbb {E}}^{\mathbb {P}}\left[ -{\mathcal {E}}\left( -R_P\int _0^T{{\widehat{\alpha }}}_s^{\frac{1}{2}}(1\right. \right. \\&\left. \left. -z^\star ({{\widehat{\alpha }}}_s))\mathrm{d}W_s^{a^\star (z^\star )}\right) e^{R_P\left( R_0-\int _0^TH({{\widehat{\alpha }}}_s, z^\star ({{\widehat{\alpha }}}_s), 0)\mathrm{d}s\right) }\right] . \end{aligned}$$

Then we have for any \(\alpha \ge 0\)

$$\begin{aligned} H(\alpha ,z^\star (\alpha ),0)&=-\frac{\alpha }{2} R_P+ \frac{(1+\alpha k R_P)^2}{2k(1+\alpha k(R_A+R_P))}. \end{aligned}$$

Hence,

$$\begin{aligned} \frac{\partial H}{\partial \alpha }(\alpha ,z^\star (\alpha ),0)=\frac{-R_A\left( 1+2k\alpha R_P +k^2\alpha ^2 R_P(R_A+R_P)\right) }{2(1+\alpha k(R_A+R_P))^2}\le 0, \ \forall \alpha \in [{{\underline{\alpha }}}^P, {{\overline{\alpha }}}^P]. \end{aligned}$$

Therefore, \({\underline{U}}^P_0\ge -e^{R_P R_0}e^{-R_P\int _0^TH({{\overline{\alpha }}}^P, z^\star ({{\overline{\alpha }}}^P), 0)\mathrm{d}s}.\) Indeed, \(z^\star ({{\widehat{\alpha }}}_s)\) is bounded so that the stochastic exponential is trivially a true martingale. We now turn to the converse inequality; we have

$$\begin{aligned} {\underline{U}}_0^P\le & {} \underset{(Z,{\varGamma })\in {\mathfrak {K}}}{\sup }\ {\mathbb {E}}^{{\mathbb {P}}_{a^\star (Z_\cdot )}^{{{\overline{\alpha }}}^P}}\left[ -{\mathcal {E}}\left( -R_P\int _0^T({\overline{\alpha }}^P)^{1/2}(1\right. \right. \\&\left. \left. -Z_s)\mathrm{d}W_s^{a^\star (Z_\cdot )}\right) e^{R_P\left( R_0-\int _0^TH({{\overline{\alpha }}}^P,Z_s,{\varGamma }_s)\mathrm{d}s\right) }\right] . \end{aligned}$$

According to Lemma 4.2(i), we obtain \({\underline{U}}_0^P\le -e^{R_P R_0} e^{-R_PTH({{\overline{\alpha }}}^P, z^\star ({{\overline{\alpha }}}^P), 0)}.\) Hence, if \({{\underline{\alpha }}}^A\le {{\overline{\alpha }}}^P\le {{\overline{\alpha }}}^A \), then \({\underline{U}}_0^P= -e^{R_PR_0}e^{-R_P\int _0^TH({{\overline{\alpha }}}^P, z^\star ({{\overline{\alpha }}}^P), 0)\mathrm{d}s}.\) We now prove that the contract \(\xi ^{R_0,z^\star ({{{\overline{\alpha }}}^P}), 0}\in {\mathfrak {C}}^{\mathrm{SB}}\) is indeed optimal. We have

$$\begin{aligned}&\underset{{\mathbb {P}}\in {{\mathcal {P}}}_P^{a^\star (z^\star ({{\overline{\alpha }}}^P))}}{\inf }{\mathbb {E}}^{\mathbb {P}}\left[ -{\mathcal {E}}\left( -R_P\int _0^T{{\widehat{\alpha }}}_s^{\frac{1}{2}}(1\right. \right. \\&\quad \left. \left. -z^\star ({{\overline{\alpha }}}^P))\mathrm{d}W_s^{a^\star (z^\star ({{\overline{\alpha }}}^P))}\right) e^{R_P\left( R_0-\int _0^TH({{\widehat{\alpha }}}_s, z^\star ({{\overline{\alpha }}}^P), 0)\mathrm{d}s\right) }\right] ={\underline{U}}_0^P, \end{aligned}$$

since by definition (40) of H, \(\alpha \longmapsto H(\alpha , z^\star ({{\overline{\alpha }}}^P),0)\) is decreasing, so that the above infimum is attained for the measure \({\mathbb {P}}^{{{\overline{\alpha }}}^P}_{a^\star (z^\star ({{\overline{\alpha }}}^P))}\).

We now turn to the proof of (ii). Assume that \({{\underline{\alpha }}}^P \le {{\overline{\alpha }}}^A\le {{\overline{\alpha }}}^P\). On the one hand,

$$\begin{aligned}&\underset{{\mathbb {P}}\in {{\mathcal {P}}}_P^{a^\star (z^\star ({{\overline{\alpha }}}^A))}}{\inf }{\mathbb {E}}^{\mathbb {P}}\left[ -{\mathcal {E}}\left( -R_P\int _0^T{{\widehat{\alpha }}}_s^{\frac{1}{2}}(1\right. \right. \\&\left. \left. -z^\star ({{\overline{\alpha }}}^A))\mathrm{d}W_s^{a^\star (z^\star ({{\overline{\alpha }}}^A))}\right) e^{R_P\left( R_0-\int _0^TH({{\widehat{\alpha }}}_s, z^\star ({{\overline{\alpha }}}^A), \gamma ^\star )\mathrm{d}s\right) }\right] \le {\underline{U}}_0^P, \end{aligned}$$

where \(\gamma ^\star := -R_A (z^\star ({{\overline{\alpha }}}^A))^2 -R_P(1-z^\star ({{\overline{\alpha }}}^A))^2.\) Thus, using Relation (41), we have

$$\begin{aligned} {\underline{U}}_0^P\ge -e^{R_P R_0}e^{-R_PTH({{\overline{\alpha }}}^A,z^\star ({{\overline{\alpha }}}^A),0)}. \end{aligned}$$

On the other hand, since \({{\overline{\alpha }}}^A\in [{{\underline{\alpha }}}^P, {{\overline{\alpha }}}^P]\)

$$\begin{aligned} {\underline{U}}_0^P\le & {} e^{R_P R_0}\underset{(Z,{\varGamma })\in {\mathfrak {U}}}{\sup }\ {\mathbb {E}}^{{\mathbb {P}}^{{{\overline{\alpha }}}^A}_{a^\star (Z_\cdot )}}\left[ -{\mathcal {E}}\left( -R_P\int _0^T{{\overline{\alpha }}^A}^{1/2}(1\right. \right. \\&\left. \left. -Z_s)\mathrm{d}W_s^{a^\star (Z_\cdot )}\right) e^{-R_P\int _0^TH({{\overline{\alpha }}}^A,Z_s,{\varGamma }_s)\mathrm{d}s}\right] . \end{aligned}$$

By using Lemma 4.2(i), we obtain \({\underline{U}}_0^P\le -e^{R_P R_0}e^{-R_PTH({{\overline{\alpha }}}^A,z^\star ({{\overline{\alpha }}}^A),0)}.\)

We consider now a contract \(\xi ^{R_0,z^\star ({{\overline{\alpha }}}^A), \gamma ^\star }\) and we show that \({\underline{U}}_0^P(\xi ^{R_0,z^\star ({{\overline{\alpha }}}^A), \gamma ^\star } )={\underline{U}}_0^P\). We have

$$\begin{aligned}&\underset{{\mathbb {P}}\in {{\mathcal {P}}}_P^{a^\star (z^\star ({{\overline{\alpha }}}^A)}}{\inf }{\mathbb {E}}^{\mathbb {P}}\left[ -{\mathcal {E}}\left( -R_P\int _0^T{{\widehat{\alpha }}}_s^{1/2}(1\right. \right. \\&\left. \left. \qquad -z^\star ({{\overline{\alpha }}}^A))\mathrm{d}W_s^{a^\star (z^\star ({{\overline{\alpha }}}^A))}\right) e^{R_P\left( R_0-\int _0^TH({{\widehat{\alpha }}}_s, z^\star ({{\overline{\alpha }}}^A), \gamma ^\star )\mathrm{d}s\right) }\right] \\&\quad =-e^{R_P R_0}e^{-R_PTH({{\overline{\alpha }}}^A,z^\star ({{\overline{\alpha }}}^A), 0)} ={\underline{U}}_0^P, \end{aligned}$$

since \(H(\alpha , z^\star ({{\overline{\alpha }}}^A),\gamma ^\star )\) is actually independent of \(\alpha \). The last two results are immediate consequences of Proposition 4.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrolia, T., Possamaï, D. Moral Hazard Under Ambiguity. J Optim Theory Appl 179, 452–500 (2018). https://doi.org/10.1007/s10957-018-1230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1230-8

Keywords

Mathematics Subject Classification

Navigation