Skip to main content
Log in

Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Matrix models of age-and/or stage-structured population dynamics rest upon the Perron-Frobenius theorem for nonnegative matrices, and the life cycle graph for individuals of a given biological species plays a major role in model construction and analysis. A summary of classical results in the theory of matrix models for population dynamics is presented, and generalizations are proposed, which have been motivated by a need to account for an additional structure, i.e., to classify individuals not only by age, but also by an additional (discrete) characteristic: size, physiological status, stage of development, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bernardelli, “Population waves,” J. Burma Res. Soc., 31, 1–18 (1941).

    Google Scholar 

  2. G. Birkhoff, “Extensions of Jentzsch's theorem,” Trans. Amer. Math. Soc., 85, 219–227 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, Sunderland (1989).

    Google Scholar 

  4. H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed., Sinauer Associates, Sunderland (2001).

    Google Scholar 

  5. J. E. Cohen, “Ergodic theorems in demography,” Bull. Amer. Math. Ass., 1, 275–295 (1979).

    Article  Google Scholar 

  6. A. I. Csetenyi and D. O. Logofet, “Leslie model revisited: Some generalizations for block structures,” Ecol. Model., 48, 277–290 (1989).

    Article  Google Scholar 

  7. P. Cull and A. Vogt, “The periodic limits for the Leslie model,” Math. Biosci., 21, 39–54 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. M. Fikhtengolts, A Course in Differential and Integral Calculus [in Russian], Vol. 1, Nauka, Moscow (1970).

    Google Scholar 

  9. F. R. Gantmacher, The Theory of Matrices, Chelsea, New York (1960), Chap. 13.

    Google Scholar 

  10. L. A. Goodman, “The analysis of population growth when the birth and death rates depend upon several factors,” Biometrics, 25, 659–681 (1969).

    Article  MathSciNet  Google Scholar 

  11. P. E. Hansen, “Leslie matrix models: A mathematical survey,” in: A. I. Csetenyi, ed., Papers on Mathematical Ecology, Vol. 1, Karl Marx University of Economics, Budapest (1986), pp. 54–106.

    Google Scholar 

  12. F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York (1965), Chap. 7.

    MATH  Google Scholar 

  13. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, London (1990).

    MATH  Google Scholar 

  14. I. N. Klochkova, “Expansion of the reproductive potential theorem for Logofet matrices,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No 3, 45–48 (2004).

  15. R. Law, “A model for the dynamics of a plant population containing individuals classified by age and size,” Ecology, 64, 224–230 (1983).

    Article  Google Scholar 

  16. L. P. Lefkovitch, “The study of population growth in organisms grouped by stages,” Biometrics, 21, 1–18 (1965).

    Article  Google Scholar 

  17. P. H. Leslie, “On the use of matrices in certain population mathematics,” Biometrika, 33, 183–212 (1945).

    Article  MATH  MathSciNet  Google Scholar 

  18. E. G. Lewis, “On the generation and growth of a population,” Sankhya: Indian J. Stat., 6, 93–96 (1942).

    Google Scholar 

  19. D. O. Logofet, Matrices and Graphs: Stability Problems in Mathematical Ecology, CRC Press, Boca Raton (1993).

    Google Scholar 

  20. D. O. Logofet, “Paths and cycles as tools for characterizing some classes of matrices,” Dokl. Ross. Akad. Nauk, 60, No. 1, 46–49 (1999).

    Google Scholar 

  21. D. O. Logofet, “Three sources and three constituents of the formalism for a population with discrete age and stage structures,” Mat. Model., 14, 11–22 (2002).

    MATH  MathSciNet  Google Scholar 

  22. D. O. Logofet and I. N. Klochkova, “Mathematics of the Lefkovitch model: The reproductive potential and asymptotic cycles,” Mat. Model., 14, 116–126 (2002).

    MATH  MathSciNet  Google Scholar 

  23. D. O. Logofet, N. G. Ulanova, I. N. Klochkova, and A. N. Demidova, “Structure and dynamics of a clonal plant population: Classical model results in a non-classic formulation,” Ecol. Model., 192, 95–106 (2006).

    Article  Google Scholar 

  24. J. S. Maybee, D. D. Olesky, P. van den Driessche, and G. Wiener, “Matrices, digraphs, and determinants,” SIAM J. Matrix Anal. Appl., 10, 500–519 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Parlett, “Ergodic properties of population. I. The one-sex model,” Popul. Biol., 1, 191–207 (1970).

    Article  MathSciNet  Google Scholar 

  26. E. Seneta, Non-Negative Matrices and Markov Chains, 2nd ed., Springer, New York (1981), Chap. 3.

    MATH  Google Scholar 

  27. T. I. Serebryakova and T. G. Sokolova, Plant Cenopopulations (Essays on Population Biology) [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  28. Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities [in Russian], Mir, Moscow (1983).

    Google Scholar 

  29. N. G. Ulanova, “Plant age stages during succession in woodland clearing in central Russia,” in: Vegetation Science in Retrospect and Perspective, Opulus, Uppsala (2000), pp. 80–83.

    Google Scholar 

  30. N. G. Ulanova, A. N. Demidova, I. N. Klochkova, and D. O. Logofet, “The structure and dynamics of a wood reed Calamagrostis canescens population: A modelling approach,” Zh. Obshch. Biol., 63, No. 6, 509–521 (2002).

    Google Scholar 

  31. M. B. Usher, “Developments in the Leslie matrix models,” in: J. N. R. Jeffres, ed., Mathematical Models in Ecology, Blackwell, Oxford (1972), pp. 29–60.

    Google Scholar 

  32. B. V. Voyevodin and Yu. A. Kuznetsov, Matrices and Calculations [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Logofet.

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 4, pp. 145–164, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logofet, D.O., Belova, I.N. Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions. J Math Sci 155, 894–907 (2008). https://doi.org/10.1007/s10958-008-9249-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9249-2

Keywords

Navigation