Skip to main content
Log in

Control theory on lie groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Lecture notes of an introductory course on control theory on Lie groups. Controllability and optimal control for left-invariant problems on Lie groups are addressed. A general theory is accompanied by concrete examples. The course is intended for graduate students; no preliminary knowledge of control theory or Lie groups is assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Springer-Verlag (2004).

  2. R. El Assoudi, J. P. Gauthier, and I. Kupka, “On subsemigroups of semisimple Lie groups,” Ann. Inst. H. Poincaré, 13, No. 1, 117–133 (1996).

    MATH  MathSciNet  Google Scholar 

  3. V. Ayala Bravo, “Controllability of nilpotent systems,” in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ., Warszawa, 32, 35–46 (1995).

    Google Scholar 

  4. B. Bonnard, “Contrôllabilité des systèmes bilinéaires,” Math. Syst. Theory, 15, 79–92 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet, “Transitivity of families of invariant vector fields on the semidirect products of Lie groups,” Trans. Amer. Math. Soc., 271, No. 2, 525–535 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Boothby, “A transitivity problem from control theory,” J. Differ. Equat., 17, 296–307 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Boothby and E. N. Wilson, “Determination of the transitivity of bilinear systems,” SIAM J. Control, 17, 212–221 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Borel, “Some remarks about transformation groups transitive on spheres and tori”, Bull. Amer. Math. Soc., 55, 580–586 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Borel, “Le plan projectif des octaves et les sphères comme espaces homogènes,” C. R. Acad. Sci. Paris, 230, 1378–1380 (1950).

    MATH  MathSciNet  Google Scholar 

  10. U. Boscain, T. Chambrion, and J.-P. Gauthier, “On the K + P problem for a three-level quantum system: Optimality implies resonance,” J. Dynam. Control Systems, 8, 547–572 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  11. R. W. Brockett, “System theory on group manifolds and coset spaces,” SIAM J. Control, 10, 265–284 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  12. J. P. Gauthier and G. Bornard, “Contrôlabilité des systèmes bilinèaires,” SIAM J. Control Optim., 20 (1982), No. 3, 377–384.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Hilgert, K. H. Hofmann, and J. D. Lawson, “Controllability of systems on a nilpotent Lie group,” Beiträge Algebra Geometrie, 20, 185–190 (1985).

    MATH  MathSciNet  Google Scholar 

  14. V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press (1997).

  15. V. Jurdjevic and I. Kupka, “Control systems subordinated to a group action: Accessibility,” J. Differ. Equat., 39, 186–211 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Jurdjevic and I. Kupka, “Control systems on semi-simple Lie groups and their homogeneous spaces,” Ann. Inst. Fourier, 31, No. 4, 151–179 (1981).

    MATH  MathSciNet  Google Scholar 

  17. V. Jurdjevic and H. Sussmann, “Control systems on Lie groups,” J. Differ. Equat., 12, 313–329 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  18. D. F. Lawden, Elliptic Functions and Applications, Springer-Verlag (1980).

  19. J. D. Lawson, “Maximal subsemigroups of Lie groups that are total,” Proc. Edinburgh Math. Soc., 30, 479–501 (1985).

    Article  MathSciNet  Google Scholar 

  20. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity Dover, New York (1927).

    MATH  Google Scholar 

  21. D. Mittenhuber, “Controllability of solvable Lie algebras,” J. Dynam. Control Systems, 6, No. 3, 453–459 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Mittenhuber, “Controllability of systems on solvable Lie groups: the generic case,” J. Dynam. Control Systems, 7, No. 1, 61–75 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Monroy-Pérez, “Non-Euclidean Dubins problem,” J. Dynam. Control Systems, 4, No. 2, 249–272 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Monroy-Pérez and A. Anzaldo-Meneses, “Optimal control on the Heisenberg group”, J. Dynam. Control Systems, 5, No. 4, 473–499 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Monroy-Pérez and A. Anzaldo-Meneses, “Optimal control on nilpotent Lie groups”, J. Dynam. Control Systems, 8, No. 4, 487–504 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Monroy-Pérez and A. Anzaldo-Meneses, “The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry,” J. Dynam. Control Systems, 12, No. 2, 185–216 (2006).

    Article  MATH  Google Scholar 

  27. D. Montgomery and H. Samelson, “Transformation groups of spheres,” Ann. Math., 44, 454–470 (1943).

    Article  MathSciNet  Google Scholar 

  28. R. Montgomery, A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc. (2002).

  29. O. Myasnichenko, “Nilpotent (3, 6) sub-Riemannian problem,” J. Dynam. Control Systems, 8, No. 4, 573–597 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  30. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon Press, Oxford (1964).

    MATH  Google Scholar 

  31. Yu. L. Sachkov, “Controllability of hypersurface and solvable invariant systems,” J. Dynam. Control Systems, 2, No. 1, 55–67 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  32. Yu. L. Sachkov, “Controllability of right-invariant systems on solvable Lie groups,” J. Dynam. Control Systems, 3, No. 4, 531–564 (1997).

    MATH  MathSciNet  Google Scholar 

  33. Yu. L. Sachkov, On invariant orthants of bilinear systems. J. Dynam. Control Systems, 4, No. 1, 137–147 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  34. Yu. L. Sachkov, “Classification of controllable systems on low-dimensional solvable Lie groups,” J. Dynam. Control Systems, 6, No. 2, 159–217 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  35. Yu. L. Sachkov, “Controllability of invariant systems on Lie groups and homogeneous spaces,” J. Math. Sci., 100, No. 4, 2355–2427 (2000).

    MATH  MathSciNet  Google Scholar 

  36. Yu. L. Sachkov, “Exponential mapping in the generalized Dido problem,” Mat. Sb., 194, No. 9, 63–90 (2003).

    MathSciNet  Google Scholar 

  37. Yu. L. Sachkov, “Symmetries of flat rank-two distributions and sub-Riemannian structures,” Trans. Amer. Math. Soc., 356, No. 2, 457–494 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  38. Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem,” Mat. Sb., 197, No. 2, 95–116 (2006).

    MathSciNet  Google Scholar 

  39. Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem,” Mat. Sb., 197, No. 4, 123–150 (2006).

    MathSciNet  Google Scholar 

  40. Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem,” Mat. Sb., 197, No. 6: 111–160 (2006).

    MathSciNet  Google Scholar 

  41. Yu. L. Sachkov, “Maxwell strata in Euler’s elastic problem” (to appear).

  42. H. Samelson, “Topology of Lie groups,” Bull. Amer. Math. Soc., 58, 2–37 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  43. L. A. B. San Martin, “Invariant control sets on flag manifolds,” Math. Control Signals Systems, 6, 41–61 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  44. L. A. B. San Martin, O. G. do Rocio, and A. J. Santana, “Invariant cones and convex sets for bilinear control systems and parabolic type of semigroups,” J. Dynam. Control Systems, 12, 419–432 (2006).

    Article  MATH  Google Scholar 

  45. L. A. B. San Martin and P. A. Tonelli, “Semigroup actions on homogeneous spaces,” Semigroup Forum, 14, 1–30 (1994).

    Google Scholar 

  46. F. Silva Leite and P. Crouch, “Controllability on classical Lie groups,” Math. Control Signals Systems, 1, 31–42 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  47. R. M. M. Troncoso, “Regular elements and global controllability in SL(d, R),” J. Dynam. Control Systems, 10, No. 1, 29–54 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  48. A. M. Vershik and V. Ya. Gershkovich, “Nonholonomic dynamic systems. Geometry of distributions and variational problems,” in: Encycl. Math. Sci., 16, Springer-Verlag (1987), pp. 5–85.

  49. F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, Illinois (1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Sachkov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 27, Optimal Control, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachkov, Y.L. Control theory on lie groups. J Math Sci 156, 381–439 (2009). https://doi.org/10.1007/s10958-008-9275-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9275-0

Keywords

Navigation