Skip to main content
Log in

Hodge decompositions with mixed boundary conditions and applications to partial differential equations on lipschitz manifolds

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study boundary-value problems with mixed boundary conditions in weakly Lipschitz domains of compact boundaryless Riemannian Lipschitz manifolds. These include the case of the Maxwell system, the Hodge–Dirac operator, and the Hodge–Laplacian. Our approach brings to bear tools from functional analysis, differential geometry, harmonic analysis, and topology. Bibliography: 45 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mitrea, “Mixed boundary-value problems for Maxwell’s equations,” Trans. Am. Math. Soc. 362, No. 1, 117–143 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Jakab, I. Mitrea, and M. Mitrea, “On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains,” Indiana Univ. Math. J. 58, No. 5, 2043–2072 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. E. Taylor, Partial Differential Equations, Vol. I, Springer, New York (1996).

    Google Scholar 

  4. G. Schwarz, Hodge Decomposition—A Method for Solving Boundary Value Problems, Springer, Berlin (1995).

    MATH  Google Scholar 

  5. A. Axelsson and A. McIntosh, “Hodge decompositions on weakly Lipschitz domains,” In: Advances in Analysis and Geometry. New Developments Using Clifford Algebras, pp. 3–29, Birkhäuser, Basel (2004).

  6. L. Fontana, S. G. Krantz, and M. Peloso, “Hodge Theory in the Sobolev Topology for the de Rham Complex,” Mem. Am. Math. Soc. 622 (1998).

  7. G. A. Baker and J. Dodziuk, “Stability of spectra of Hodge-de Rham Laplacians,” Math. Z. 224, No. 3, 327–345 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. De Cecco and G. Palmieri, “On the regularity of eigenfunctions of the Laplace operator on a Lipschitz manifold,” J. Math. Pures Appl. 68, No. 1, 121–134 (1989).

    MathSciNet  Google Scholar 

  9. G. De Cecco and G. Palmieri, “Harmonic forms on compact Lipschitz manifolds,” Boll. Unione Mat. Ital., VII. Ser. A 2, No. 1, 101–108 (1988).

  10. Ch. Weber, “A local compactness theorem for Maxwell’s equations,” Math. Methods Appl. Sci. 2, No. 1, 12–25 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. J. Witsch, “A remark on a compactness result in electromagnetic theory,” Math. Methods Appl. Sci. 16, No. 2, 123–129 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. N. Arnold, R. S. Falk, and R. Winther, “Finite element exterior calculus, homological techniques, and applications,” Acta Numer. 15, 1–155 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Brown, “The mixed problem for Laplace’s equation in a class of Lipschitz domains,” Commun. Partial Differ. Equations 19, No. 7–8, 1217–1233 (1994).

    Article  MATH  Google Scholar 

  14. J. Rosenberg, “Applications of analysis on Lipschitz manifolds,” Proc. Cent. Math. Anal. Aust. Nat. Univ. 16, 269–283 (1988).

    Google Scholar 

  15. D. Sullivan, “Hyperbolic geometry and homeomorphisms,” In: “Geometric Topology,” pp. 543–555, Academic Press, New York etc. (1979).

    Google Scholar 

  16. S. K. Donaldson and D. P. Sullivan, “Quasiconformal 4-manifolds,” Acta Math. 163, No. 3–4, 181–252 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Teleman, “The index theorem for topological manifolds,” Acta Math. 153, 117–152 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Teleman, “The index of signature operators on Lipschitz manifolds,” Publ. Math., Inst. Hautes Étud. Sci. 58, 251–290 (1983).

    Article  MATH  Google Scholar 

  19. M. Hilsum, “Opérateurs de signature sur une variété lipschitzienne et modules de Kasparov non bornés,” C. R. Acad. Sci. Paris Sér. I Math. 297, No. 1, 49–52 (1983).

    MathSciNet  MATH  Google Scholar 

  20. M. Hilsum, “L’invariant η pour les variétés lipschitziennes,” J. Differ. Geom. 55, No. 1, 1–41 (2000).

    MathSciNet  MATH  Google Scholar 

  21. M. Hilsum, “Signature operator on Lipschitz manifolds and unbounded Kasparov bimodules,” In: Operator Algebras and their Connections with Topology and Ergodic Theory, pp. 254–288, Springer, Berlin (1985).

  22. D. Sullivan and N. Teleman, “An analytic proof of Novikov’s theorem on rational Pontrjagin classes,” Publ. Math., Inst. Hautes Étud. Sci. 58, 291–293 (1983).

    Google Scholar 

  23. D. E. Edmunds and W .D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford (1989).

    MATH  Google Scholar 

  24. K. McLeod and R. Picard, “A compact imbedding result on Lipschitz manifolds,” Math. Ann. 290, No. 3, 491–508 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory,” Math. Z. 187, No. 2, 151–164 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhäuser, Basel (2007).

    MATH  Google Scholar 

  27. M. P. Gaffney, “Hilbert space methods in the theory of harmonic integrals,” Trans. Am. Math. Soc. 78, 426–444 (1955).

    MathSciNet  MATH  Google Scholar 

  28. G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy–Riemann Complex, Princeton Univ. Press and Univ. Tokyo Press, Princeton, NJ (1972).

    MATH  Google Scholar 

  29. S. Stratilã and L. Zidó, Lectures on Von Neumann Algebras, Ed. Academiei and Abacus Press, Bucharest/Kent (1979).

    MATH  Google Scholar 

  30. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1976).

    MATH  Google Scholar 

  31. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods, Springer, Berlin (2000).

    Google Scholar 

  32. J.-L. Lions, “Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs,” J. Math. Soc. Japan 14, 233–241 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York etc. (1983).

    MATH  Google Scholar 

  34. F. Gesztesy and M. Mitrea, “Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains,” In: Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, pp. 105–173, Am. Math. Soc., Providence, RI (2008).

  35. F. Gesztesy and M. Mitrea, Some Remarks on a Paper by Filonov. Preprint, (2008).

  36. S. Hofmann, M. Mitrea, and M. Taylor, “Geometric and transformational properties of Lipschitz domains, Semmes–Kenig–Toro domains, and other classes of finite perimeter domains,” J. Geom. Anal. 17, No. 4, 593–647 (2007).

    MathSciNet  MATH  Google Scholar 

  37. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel (1983).

  38. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Operators, de Gruyter, Berlin etc. (1996).

  39. W. S. Massey, Singular Homology Theory, Springer, New York etc. (1980).

    MATH  Google Scholar 

  40. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York etc. (1983).

    MATH  Google Scholar 

  41. R. Godement, Topologie Algébrique et Théorie des Faisceaus, Paris, Hermann (1958).

    Google Scholar 

  42. M. Mitrea, “Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds,” Duke Math. J. 125, No. 3, 467–547 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Mitrea and M. Mitrea, “Finite energy solutions of Maxwell’s equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds,” J. Funct. Anal. 190, No. 2, 339–417 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Mitrea, M. Mitrea, and M. Taylor, “Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds,” Mem. Am. Math. Soc. 713 (2001).

  45. D. Mitrea, M. Mitrea, and M.-C. Shaw, “Traces of differential forms on Lipschitz domains, the boundary De Rham complex, and Hodge decompositions,” Indiana Univ. Math. J. 57, No. 5, 2061–2096 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mitrea.

Additional information

Translated from Problems in Mathematical Analysis 52, December 2010, pp. 59–100

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gol’dshtein, V., Mitrea, I. & Mitrea, M. Hodge decompositions with mixed boundary conditions and applications to partial differential equations on lipschitz manifolds. J Math Sci 172, 347–400 (2011). https://doi.org/10.1007/s10958-010-0200-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0200-y

Keywords

Navigation