Skip to main content
Log in

Optimal distributed control of nonlinear Cahn–Hilliard systems with computational realization

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The goal of this work is to present some optimal control aspects of distributed systems described by nonlinear Cahn–Hilliard equations (CH). Theoretical conclusions on distributed control of CH system associated with quadratic criteria are obtained by the variational theory (see [17]). A computational result is stated by a new semi-discrete algorithm, constructed on the basis of the finite-element method with the updated (nonlinear) conjugate gradient method for minimizing the performance index efficiently. Finally, the implementation of a laboratory demonstration is included to show the efficiency of the proposed nonlinear scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces. Academic Press, New York (1975).

    MATH  Google Scholar 

  2. K. A. Abell, A. R. Humphries, and E. S. Van Vleck, “Mosaic solutions and entropy for spatially discrete Cahn–Hilliard equations,” IMA J. Appl. Math., 65, 219–255 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Argentina, M. G. Clerc, R. Rojas, and E. Tirapegui, “Coarsening dynamics of the onedimensional Cahn-Hilliard model,” Phys. Rev. E, 71, p. 046210.

  4. J. W. Barret and J. F. Blowey, “The Cahn–Hilliard gradient theory for phase separation with nonsmooth free enegry. Part II: Numerical analysis,” Eur. J. Appl. Math., 3, 147–179 (1992).

    Article  Google Scholar 

  5. J. W. Barret and J. F. Blowey, “An error bound for the finite element approximation of the Cahn–Hilliard equations with logarithmic free energy,” Numer. Math., 72, 1–20 (1995).

    Article  MathSciNet  Google Scholar 

  6. J. W. Barret and J. F. Blowey, “Finite element approximation of the Cahn–Hilliard equations with concentration dependent mobility,” Math. Comput., 68, 487–517 (1999).

    Article  Google Scholar 

  7. J. W. Barret, J. F. Blowey, and H. Garcke, “Finite element approximation of the Cahn–Hilliard equations with degenerate mobility,” SIAM J. Numer. Anal., 37, 286–318 (2001).

    Article  Google Scholar 

  8. J. W. Barret and J. F. Blowey, “Finite element approximation for an Allen–Cahn/Cahn–Hilliard system,” IMA J. Appl. Math., 22, 11–71 (2002).

    Google Scholar 

  9. F. Boyer, L. Chupin, and P. Fabrie, “Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model, Eur. J. Mech. B Fluids, 23, 759–780 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system-I: Interfacial free energy,” J. Chem. Phys., 28, 258–267 (1958).

    Article  Google Scholar 

  11. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system-III: Nucleation in a 2-component incompressible fluid,” J. Chem. Phys., 31, 688–699 (1959).

    Article  Google Scholar 

  12. J. W. Cahn and A. Novick-Cohen, “Evolution equation for phase separation and ordering in binary alloys,” J. Stat. Phys., 76, 877–909 (1994).

    Article  MATH  Google Scholar 

  13. J. W. Cahn and A. Novick-Cohen, “Limiting motion for an Allen–Cahn/Cahn–Hilliard system,” In: Free Boundary Problems and Applications, Addison-Wesley Longman (1996), pp. 89–97.

  14. S. M. Choo and S. K. Chung, “Conservative nonlinear difference scheme for the Cahn–Hilliard equations,” Comput. Math. Appl., 36, 31–39 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. M. Choo, S. K. Chung, and K. I. Kim, “Consevative nonlinear difference scheme for the Cahn–Hilliard equations.II,” Comput. Math. Appl., 39, 229–243 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. I. Copetti and C. M. Elliott, “Numberical analysis of the Cahn–Hilliard equation with a logarithmic free energy,” Numer. Math., 63, 39–65 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Dautary and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin-Heidelberg-New York (1992).

    Google Scholar 

  18. Q. Du and R. A. Nicolaides, “Numerical analysis of a continuum model of phase transition,” SIAM J. Numer. Anal., 28, 1310–1322 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. M. Elliot and S. M. Zheng, “On the Cahn–Hilliard equations,” Arch. Rat. Mech. Anal., 96, 339–357 (1986).

    Article  Google Scholar 

  20. C. M. Elliott and D. A. French, “A non-conforming finite element method for the two-dimensional Cahn–Hilliard equation,” SIAM J. Numer. Anal., 26, 884–903 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. M. Elliott and S. Larsson, “Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation, Math. Comput., 58, 603–630(1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. J. Eyre, “Systems of Cahn–Hilliard equations,” SIAM J. Appl. Math., 53, 1686–1712 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Gräser and D. Kornhuber, “Nonsmooth Newton methods for set-valued saddle point problems,” SIAM J. Numer. Anal., 47, No. 2, 1251–1237 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Han, “The Cauchy problems and steady state solution for a nonlocal Cahn–Hilliard equation,” J. Differ. Equ., 113, 1–9 (2004).

    Google Scholar 

  25. D. Kay and R. Welford, “A multigrid finite element solver for the Cahn–Hilliard equation,” J. Comput. Phys., 212, 288–304 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. S. Lasdon, S. K. Mitter, and A. D. Warren, “The conjugate gradient method for optimal control problems,” IEEE Trans. Autom. Control, 12, 132–138 (1967).

    Article  Google Scholar 

  27. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York (1971).

    MATH  Google Scholar 

  28. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. I, II, Springer-Verlag, Berlin-Heidelberg-New York (1972).

    Google Scholar 

  29. E. Melloa and O. Filhob, “Numerical study of the Cahn–Hilliard equation of one, two, and three dimensions, Physica A, 347, 429–443 (2005).

    Article  MathSciNet  Google Scholar 

  30. A. Novik-Cohen, “Energy method for the Cahn–Hilliard equations,” Quart. Appl. Math., XLVI, 681–690 (1988).

    Google Scholar 

  31. A. Novick-Cohen, “Triple junction motion for an Allen–Cahn/Cahn–Hilliard system,” Physica D, 137, 1–24 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Y. Park and J. J. Bae, “On the existence of solution of strongly damped nonlinear wave equations,” Int. J. Math. Math. Sci., 23, 369–382 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Rebelo and G. V. Smirnov, “Uniform cooling of alloys,” J. Dynam. Control Syst., 11, No. 3, 413–432 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Rybka and K. H. Hoffmann, “Convergence of solutions to Cahn–Hilliard equation,” Commun. Partial Differ. Equ.,” 24, 1055–1077 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Shen and S. Zheng, “On coupled Cahn–Hilliard equations,” Commun. Partial Differ. Equ., 18, 701–727 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Shen and S. Zheng, “Maximal attractor for the coupled Cahn–Hilliard equations,” Nonlin. Anal., 49, 21–34 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Sun, “A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation,” Math. Comput., 64, 1463–1471 (1995).

    MATH  Google Scholar 

  38. R. Temam, “Infinite-dimensional dynamical systems in mechanics and physis,” In: Applied Mathematical Sciences 68, Springer-Verlag, Berlin-Heidelberg-New York (1998).

    Google Scholar 

  39. Q. F. Wang and S. Nakagiri, “Weak solution of Cahn–Hilliard equations having forcing term and optimal control problems,” Research Institute for Mathematical Sciences, Kyoto Univ. KoKyuroku, 1128, 172–180 (2000).

    MathSciNet  MATH  Google Scholar 

  40. Q. F. Wang, “Numerical approximate of optimal control for distributed diffusion Hopfield neural networks,” Int. J. Numer. Method Eng., 69, 443–468 (2006).

    Article  Google Scholar 

  41. Q. F. Wang, “Numerical study of optimal control for nonlinear Cahn–Hilliard equations,” SIAM Annual Conference on Analysis of Partial Differential Equations, Boston, USA (2006).

  42. J. Yin, On the existence of nonnegative continuous solutions of the Cahn–Hilliard equations,” J. Differ. Equ., 97, 310–327 (1992).

    Article  MATH  Google Scholar 

  43. J. Yin and C. Liu, “Regularity of solution of the Cahn–Hilliard equation with concentration dependent mobility,” Nonlin. Anal., 45, 543–554 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Yong and S. Zheng, “Feedback stabilization and optimal control for Cahn–Hilliard equation,” Nonlin. Anal., 17, 431–444 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Zheng, “Asymptotic behavior of solution to the Cahn–Hilliard equation,” Appl. Anal., 23, 165–184 (1986).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Fang Wang.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 70, Differential Equations and Optimal Control, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, QF. Optimal distributed control of nonlinear Cahn–Hilliard systems with computational realization. J Math Sci 177, 440–458 (2011). https://doi.org/10.1007/s10958-011-0470-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0470-z

Keywords

Navigation