Skip to main content
Log in

Stefan problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We prove the existence of a global classical solution of the multidimensional two-phase Stefan problem. The problem is reduced to a quasilinear parabolic equation with discontinuous coefficients in a fixed domain. With the help of a small parameter ε, we smooth coefficients and investigate the resulting approximate solution. An analytical method that enables one to obtain the uniform estimates of an approximate solution in the cross-sections t = const is developed. Given the uniform estimates, we make the limiting transition as ε → 0. The limit of the approximate solution is a classical solution of the Stefan problem, and the free boundary is a surface of the class H 2+α,1+α/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Athanasopoulos, L. Caffarelli, and S. Salsa, “Regularity of the free boundary in parabolic phase transition problems,” Acta Math., 176(2), 245–282 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Athanasopoulos, L. A. Caffarelli, S. Salsa, “Stefan-like problems with curvature,” J. Geom. Anal., 13, No. 1, 21–27 (2003).

    MathSciNet  MATH  Google Scholar 

  3. B. V. Bazalii, “Stefan problem,” Dokl. AN UkrSSR. Ser. A, No. 1, 3–7 (1986).

    MathSciNet  Google Scholar 

  4. M. A. Borodin, “On the solvability of the two-phase nonstationary Stefan problem,” Dokl. AN SSSR, 263, No. 5, 1040–1042 (1982).

    MathSciNet  Google Scholar 

  5. M. A. Borodin, “Existence of the clobal classical solution for a two-phase Stefan problem,” SIAM J. Math. Anal., 30, No. 6, 1264–1281 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. A. Borodin, “The Stefan problem with surface tension,” Ukr. Math. Bull., 1, No. 1, 53–65 (2004).

    MathSciNet  Google Scholar 

  7. L. A. Caffarelli, “The smoothness of the free surface in a filtration problem,” Arch. Rat. Mech. Anal., 63, No. 1, 77–86 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. A. Caffarelli, “The regularity of elliptic and parabolic free boundaries,” Bull. Amer. Math. Soc., 82, 616–618 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. A. Caffarelli, “The regularity of free boundaries in higher dimensions,” Acta Math., 139, 156–184 (1977).

    Article  MathSciNet  Google Scholar 

  10. I. I. Danilyuk, “Stefan problem,” Uspekhi Mat. Nauk, 40(5), 133–185 (1985).

    MathSciNet  Google Scholar 

  11. G. Duvaut, “Resolution d’un probleme de Stefan,” C. R. Acad. Sc. Paris, 276 A, 1461–1463 (1973).

    MathSciNet  Google Scholar 

  12. A. Friedman and D. Kinderlehrer, “A one phase Stefan problem,” Indiana Univ. Math. J., 24, 1005–1035 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. C. Gupta, The Classical Stefan Problem, Elsevier, Amsterdam, 2003.

    MATH  Google Scholar 

  14. E.-I. Hanzawa, “Classical solution of the Stefan problem,” Tohoku Math. J., 33, 297–335 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kamenomostkaya, “On the Stefan problem,” Math. Sb., 5, 489–514 (1961).

    Google Scholar 

  16. D. Kinderlehrer and L. Nirenberg, “The smoothness of the free boundary in the one phase Stefan problem,” Comm. Pure Appl. Math., 31, 257–282 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type, Academic Press, New York, 1968.

    Google Scholar 

  18. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.

    Google Scholar 

  19. A. I. Markushevich, Theory of Analytic Functions [in Russian], GITTL, Moscow-Leningrad, 1950.

    Google Scholar 

  20. A. M. Meirmanov, The Stefan Problem, W. de Gruyter, Berlin, 1992.

    Book  MATH  Google Scholar 

  21. R. H. Nochetto, “A class of non-gegenerate two-phase Stefan problems in several variables,” Commun. PDE, 12, No. 1, 21–45 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  22. O. A. Oleinik, “On a method of solution of the general Stefan problem,” Dokl. AN SSSR, 135, No. 5, 1054–1057 (1960).

    MathSciNet  Google Scholar 

  23. J. Pruss and G. Simonett, “Stability of equilibria for the Stefan problem with surface tension,” SIAM J. Math. Anal., 40, No. 2, 675–698 (2008).

    Article  MathSciNet  Google Scholar 

  24. E. V. Radkevich, “The spectrum of a bundle of two-phase Stefan problems,” Dokl. AN SSSR, 316, No. 6, 1322–1327 (1990).

    MathSciNet  Google Scholar 

  25. D. A. Tarzia and C. V. Turner, “The asymptotic behavior for the two-phase Stefan problem with a convective boundary condition,” J. Commun. Appl. Anal., 7, No. 3, 313–334 (2003).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Borodin.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 8, No. 1, pp. 17–54, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, M.A. Stefan problem. J Math Sci 178, 13–40 (2011). https://doi.org/10.1007/s10958-011-0524-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0524-2

Keywords

Navigation