Skip to main content
Log in

SU(6) Casimir invariants and SU(2) ⊗ SU(3) scalars for a mixed qubit-qutrit state

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In the present paper, a few steps are undertaken towards the description of the “qubit–qutrit” pair – a quantum bipartite system composed of two- and three-level subsystems. Calculations of the Molien functions and Poincaré series for the qubit-qubit and qubit-qutrit “local unitary invariants” are outlined and compared with the known results. The requirement of the positive semi-definiteness of the density operator is formulated explicitly as a set of inequalities in five Casimir invariants of the enveloping algebra \( \mathfrak{su}\)(6). Bibliography: 26 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  2. V. Vedral, Introduction to Quantum Information Science, Oxford Univ. Press, New York (2006).

    Book  MATH  Google Scholar 

  3. H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton (1939).

    Google Scholar 

  4. V. L. Popov and E. B. Vinberg, “Invariant theory,” in: Algebraic Geometry IV, Encycl. Math. Sci.. Vol, 55, Springer-Verlag, Berlin (1994), pp. 123–273.

    Google Scholar 

  5. N. Linden and S. Popescu, “On multi-particle entanglement,” Fortschr. Phys., 46, 567–578 (1998).

    Article  MathSciNet  Google Scholar 

  6. M. Grassl, M. Rötteler, and T. Beth, “Computing local invariants of qubit systems,” Phys. Rev. A, 58, 1833–1859 (1998).

    Article  MathSciNet  Google Scholar 

  7. R. C. King, T. A. Welsh, and P. D. Jarvis, “The mixed two-qubit system and the structure of its ring of local invariants,” J. Phys, A, 40, 10083–10108 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Gerdt, Yu. Palii, and A. Khvedelidze, “On the ring of local polynomial invariants for a pair of entangled qubits,” J. Math. Sci., 168, 368–378 (2010).

    Article  MathSciNet  Google Scholar 

  9. M. Kus and K. Źyczkowski, “Geometry of entangled states,” Phys. Rev. A, 63, 032307 (2001).

    Article  MathSciNet  Google Scholar 

  10. I. Bengtsson and K. Źyczkowski, Geometry of Quantum States, An Introduction to Quantum Entanglement, Cambridge Univ. Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  11. F. T. Hioe and J. H. Eberly, “N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics,” Phys. Rev. Lett., 47, 838–841 (1981).

    Article  MathSciNet  Google Scholar 

  12. N. Jacobson, Lie Algebras, Wiley-Interscience, New-York-London (1962).

    MATH  Google Scholar 

  13. I. M. Gelfand, “The center of an infinitesimal group ring,” Mat. Sbornik N.S., 26, No. 1, 103–112 (1950).

    MathSciNet  Google Scholar 

  14. D. P. Zhelobenko, Compact Lie Groups and Their Representations, Transl. Math. Monographs, Vol. 40, Amer. Math. Soc., Providence, Rhode Island (1978).

    Google Scholar 

  15. L. C. Biedenharn. “On the representations of the semisimple Lie groups, The explicit construction of invariants for the uniniodular unitary group in N dimensions,” J. Math. Phys., 4, 436–445 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  16. R. H. Dalitz, “Constraints on the statistical tensor for low-spin particles produced in strong interaction processes,” Nucl. Phys., 87, 89–99 (1966).

    Article  Google Scholar 

  17. P. Minnaert, “Spin-density analysis, Positivity conditions and Eberhard-Good theorem,” Phys. Rev., 151, 1306–1318 (1966).

    Article  Google Scholar 

  18. S. M. Deen, P. K. Kabir, and G. Karl, “Positivity constraints on density matrices,” Phys. Rec. D, 4, 1662–1666 (1971).

    Article  Google Scholar 

  19. G. Kimura, “The Bloch vector for N-level systems,” Phys. Lett. A, 314, 339–349 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. S. Byrd and N. Khaneja, “Characterization of the positivity of the density matrix in terms of the coherence vector representation,” Phys. Rev. A, 68, 062322 (2003).

    Article  MathSciNet  Google Scholar 

  21. V. Gerdt, A. Khvedelidze, and Yu. Palii, “Constraints on SU(2) ⊗ SU(2) invariant polynomials for a pair of entangled qubits,” Yad. Fiz., 74, No. 6, 919–925 (2011).

    Google Scholar 

  22. M. Hochster and J. Roberts, “Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay,” Adv. Math., 13, 125–175 (1974).

    Article  MathSciNet  Google Scholar 

  23. D. Djokovic, “Poincaré series for local unitary invariants of mixed states of the qubit-qutrit system,” arXiv:quant-ph/0605018v1 (2006).

  24. A. J. Macfarlane and H. Pfeiffer, “On characteristic equations, trace identities and Casimir operators of simple Lie algebras,” J. Math. Phys., 41, 3192–3225 (2000),

    Article  MATH  MathSciNet  Google Scholar 

  25. V. I. Ogievetsky and I. V. Polubarinov, “Eightfold-way formalism in SU(3) and 10- and 27-plets,” Yad. Fiz., 4, 853–861 (1965).

    Google Scholar 

  26. A. P. Bukhvostov, “The algebra of 3 × 3 matrices in 8-dimensional vector representation,”’ Preprint of St. Petersburg Nuclear Physics Institute, INP-1821/1822 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gerdt.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 387, 2011, pp. 102–121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerdt, V., Mladenov, D., Palii, Y. et al. SU(6) Casimir invariants and SU(2) ⊗ SU(3) scalars for a mixed qubit-qutrit state. J Math Sci 179, 690–701 (2011). https://doi.org/10.1007/s10958-011-0619-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0619-9

Keywords

Navigation