Skip to main content

Advertisement

Log in

On a General Approach to the Strong Laws of Large Numbers*

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A general method to obtain strong laws of large numbers is studied. The method is based on abstract Hájek–Rényi type maximal inequalities. The rate of convergence in the law of large numbers is also considered. Some applications for weakly dependent sequences are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Bickel, “A Hájek–Rényi extension of Lévy’s inequality and some applications,” Acta Math. Acad. Sci. Hung., 21, 199–206 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  2. H. D. Brunk, “The strong law of large numbers,” Duke Math. J., 15, 181–195 (1948).

    Article  MATH  MathSciNet  Google Scholar 

  3. T. K. Chandra and S. Ghosal, “Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables,” Acta Math. Hung., 71, No. 4, 327–336 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. S. Chow, “A martingale inequality and the law of large numbers,” Proc. Am. Math. Soc., 11, 107–111 (1960).

    Article  MATH  Google Scholar 

  5. T.C. Christofides, “Maximal inequalities for demimartingales and a strong law of large numbers,” Stat. Probab. Lett., 50, No. 4, 357–363 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Fazekas, On a General Approach to the Strong Laws of Large Numbers, Manuscript. http://www.inf.unideb.hu/valseg/dolgozok/fazekasi/preprint/Haj-Reny3.pdf (2006).

  7. I. Fazekas and O. I. Klesov, A general approach to the strong laws of large numbers, Technical Report, No. 4/1998, Kossuth Lajos University, Debrecen, Hungary (1998).

  8. I. Fazekas and O. I. Klesov, “A general approach to the strong laws of large numbers,” Theory Probab. Appl., 45, No. 3, 436–449 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. G.M. Fikhtengolts, A Course of Differential and Integral Calculus, Vol. 2 [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  10. J. Hájek and A. Rényi, “Generalization of an inequality of Kolmogorov,” Acta Math. Acad. Sci. Hung., 6, No. 3–4, 281–283 (1955).

    Article  MATH  Google Scholar 

  11. B. E. Hansen, “Strong laws for dependent heterogeneous processes,” Econom. Theory, 7, No. 2, 213–221 (1991). Erratum: Econom. Theory, 8, No. 3, 421–422 (1992).

  12. S. Hu and M. Hu, “A general approach rate to the strong law of large numbers,” Stat. Probab. Lett., 76, No. 8, 843–851 (2006).

    Article  MATH  Google Scholar 

  13. S. Hu, G. Chen, and X. Wang, “On extending the Brunk–Prokhorov strong law of large numbers for martingale differences,” Stat. Probab. Lett., 78, No. 18, 3187–3194 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Hu, X. Li, W. Yang, and X. Wang, “Maximal inequalities for some dependent sequences and their applications,” J. Korean Stat. Soc., 40, No. 1, 11–19 (2011).

    Article  MathSciNet  Google Scholar 

  15. H.-C. Kim, “The Hájeck–Rényi inequality for weighted sums of negatively orthant dependent random variables,” Int. J. Contemp. Math. Sci., 1, No. 5–8, 297–303 (2006).

    MATH  MathSciNet  Google Scholar 

  16. T.-S. Kim, M.-H. Ko, and I.-H. Lee, “On the strong law for asymptotically almost negatively associated random variables,” Rocky Mountain J. Math., 34, No. 3, 979–989 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. E.G. Kounias and T.-S. Weng, “An inequality and almost sure convergence,” Ann. Math. Stat., 40, No. 3, 1091–1093 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Kuczmaszewska, “The strong law of large numbers for dependent random variables,” Stat. Probab. Lett., 73, No. 3, 305–314 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Kuczmaszewska, “On Chung–Teicher type strong law of large numbers for ϱ*-mixing random variables,” Discrete Dyn. Nat. Soc., ID 140548 (2008).

  20. J. Liu, S. Gan, and P. Chen, “The Hájeck–Rényi inequality for the NA random variables and its application,” Stat. Probab. Lett., 43, No. 1, 99–105 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Longnecker and R. J. Serfling, “General moment and probability inequalities for the maximum partial sum,” Acta Math. Sci. Hung., 30, No. 1–2, 129–133 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Matuła, “A note on the almost sure convergence of sums of negatively dependent random variables,” Stat. Probab. Lett., 15, No. 3, 209–213 (1992).

    Article  MATH  Google Scholar 

  23. P. Matuła, “Convergence of weighted averages of associated random variables,” Probab. Math. Stat., 16, No. 2, 337–343 (1996).

    MATH  Google Scholar 

  24. D. L. McLeish, “A maximal inequality and dependent strong laws,” Ann. Probab., 3, No. 5, 829–839 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  25. T. F. Móri, “On the strong law of large numbers for logarithmically weighted sums,” Ann. Univ. Sci. Budapest, 36, 35–46 (1993).

    MATH  Google Scholar 

  26. F. Móricz, “Moment inequalities and the strong laws of large numbers,” Z. Wahrscheinlichkeitstheorie verw. Gebiete, 35, 299–314 (1976).

    Article  MATH  Google Scholar 

  27. C.M. Newman and A. L. Wright, “Associated random variables and martingale inequalities,” Z. Wahrsch. Verw. Gebiete, 59, No. 3, 361–371 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  28. V. V. Petrov, Sums of Independent Random Variables, Springer–Verlag, New York (1975).

    Book  Google Scholar 

  29. B. L. S. Prakasa Rao, Associated Sequences, Demimartingales and Nonparametric Inference, Birkhäuser, Basel (2012).

    Book  MATH  Google Scholar 

  30. Yu. V. Prokhorov, “On the strong law of large numbers”, Izv. Akad. Nauk SSSR, Ser. Mat., 14, No. 6, 523–536 (1950).

    MathSciNet  Google Scholar 

  31. Q.-M. Shao, “Almost sure invariance principles for mixing sequences of random variables,” Stochastic Process. Appl., 48, No. 2, 319–334 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  32. Q.-M. Shao, “Maximal inequalities for partial sums of ϱ-mixing sequences,” Ann. Probab., 23, No. 2, 948–965 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  33. Q.-M. Shao, “A comparison theorem on moment inequalities between negatively associated and independent random variables,” J. Theoret. Probab., 13, No. 2, 343–356 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. Shen, J. Yang, and S. Hu, “On strong law of large numbers and growth rate for a class of random variables,” J. Inequal. Appl., 2013 (2013).

  35. M. Songlin, “Hájek–Rényi type inequalities and strong law of large numbers for NOD sequences,” Appl. Math. Inform. Sci., 7, No. 6, 2519–2523 (2013).

    Article  MathSciNet  Google Scholar 

  36. W. F. Stout, Almost Sure Convergence, Academic Press, New York–London (1974).

    MATH  Google Scholar 

  37. C. Su, L. Zhao, and Y. Wang, “Moment inequalities and weak convergence for negatively associated sequences,” Sci. China Ser. A, 40, No. 2, 172–182 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  38. S. H. Sung, “Maximal inequalities for dependent random variables and applications,” J. Inequal. Appl., 2008, ID 598319 (2008).

  39. S. H. Sung, T.-C. Hu, and A. Volodin, “A note on the growth rate in the Fazekas–Klesov general law of large numbers and on the weak law of large numbers for tail series,” Publ. Math. Debrecen, 73, No. 1–2, 1–10 (2008).

    MATH  MathSciNet  Google Scholar 

  40. D. Szynal, “An extension of the Hájek–Rényi inequality for one maximum of partial sums,” Ann. Stat., 1, 740–744 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  41. T. Tómács, “A general method to obtain the rate of convergence in the strong law of large numbers,” Ann. Math. Inform., 34, 97–102 (2007).

    MATH  MathSciNet  Google Scholar 

  42. T. Tómács and Zs. Líbor, “A Hájek–Rényi type inequality and its applications,” Ann. Math. Inform., 33, 141–149 (2006).

    MATH  MathSciNet  Google Scholar 

  43. S. Utev and M. Peligrad, “Maximal inequalities and an invariance principle for a class of weakly dependent random variables,” J. Theor. Probab., 16, No. 1, 101–115 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  44. X. Wang, S. Hu, Y. Shen, and N. Ling, “Strong law of large numbers and growth rate for a class of random variable sequence,” Stat. Probab. Lett., 78, No. 18, 3330–3337 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  45. X. Wang, S. Hu, Y. Shen, and W. Yang, “Maximal inequality for ψ-mixing sequences and its applications,” Appl. Math. Lett., 23, No. 10, 1156–1161 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  46. X. Wang, S. Hu, X. Li, and W. Yang, “Maximal inequalities and strong law of large numbers for AANA sequences,” Commun. Korean Math. Soc., 26, No. 1, 151–161 (2011).

    Article  MathSciNet  Google Scholar 

  47. X. Wang, S. Hu, B. L. S. Prakasa Rao, and W. Yang, “Maximal inequalities for N-demimartingale and strong law of large numbers,” Stat. Probab. Lett., 81, No. 9, 1348–1353 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  48. S. Yang, C. Su, and K. Yu, “A general method to the strong law of large numbers and its applications,” Stat. Probab. Lett., 78, No. 6, 794–803 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  49. W. Yang, Y. Shen, S. Hu, and X. Wang, “Hájek–Rényi-type inequality and strong law of large numbers for some dependent sequences,” Acta Math. Appl. Sin. Engl. Ser., 28, No. 3, 495–504 (2012).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Fazekas.

Additional information

* Partially supported by the Hungarian Foundation of Scientific Researches under Grant No. OTKA T047067/2004 and Grant No. OTKA T048544/2005.

Proceedings of the XXVI International Seminar on Stability Problems for Stochastic Models, Sovata-Bai, Romania, August 27 – September 2, 2006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazekas, I. On a General Approach to the Strong Laws of Large Numbers*. J Math Sci 200, 411–423 (2014). https://doi.org/10.1007/s10958-014-1923-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1923-y

Keywords

Navigation