Skip to main content
Log in

Power and Exponential Moments of the Number of Visits and Related Quantities for Perturbed Random Walks

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \((\xi _1,\eta _1),(\xi _2,\eta _2),\ldots \) be a sequence of i.i.d. copies of a random vector \((\xi ,\eta )\) taking values in \(\mathbb{R }^2\), and let \(S_n:= \xi _1+\cdots +\xi _n\). The sequence \((S_{n-1} + \eta _n)_{n \ge 1}\) is then called perturbed random walk. We study random quantities defined in terms of the perturbed random walk: \(\tau (x)\), the first time the perturbed random walk exits the interval \((-\infty ,x]; \,N(x)\), the number of visits to the interval \((-\infty ,x]\); and \(\rho (x)\), the last time the perturbed random walk visits the interval \((-\infty ,x]\). We provide criteria for the almost sure finiteness and for the finiteness of exponential moments of these quantities. Further, we provide criteria for the finiteness of power moments of \(N(x)\) and \(\rho (x)\). In the course of the proofs of our main results, we investigate the finiteness of power and exponential moments of shot-noise processes and provide complete criteria for both, power and exponential moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The reason for the separate treatment of Subcases 2a and 2b is as follows. Assume that \(\mathbb{P }\{\xi <0\} > 0\). When \(p \ge 1\), the argument given for Subcase 2a works as well since then, due to the assumption \(\mathbb{E }J_+(\xi ^-)^{p+1} < \infty \), we also have \(\mathbb{U }_0(y) < \infty \) for all \(y\). However, when \(p \in (0,1)\) that argument fails which forces us to treat the case \(\mathbb{P }\{\xi <0\}>0\) separately as Subcase 2b.

References

  1. Alsmeyer, G.: Erneuerungstheorie. Teubner Skripten zur Mathematischen Stochastik. [Teubner texts on Mathematical Stochastics]. B. G. Teubner, Stuttgart (1991). Analyse stochastischer regenerationsschemata. [Analysis of stochastic regeneration schemes]

  2. Alsmeyer, G.: On generalized renewal measures and certain first passage times. Ann. Probab. 20(3), 1229–1247 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alsmeyer, G., Iksanov, A.: A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks. Electron. J. Probab. 14(10), 289–312 (2009)

    MATH  MathSciNet  Google Scholar 

  4. Alsmeyer, G., Iksanov, A., Rösler, U.: On distributional properties of perpetuities. J. Theoret. Probab. 22(3), 666–682 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Araman, V.F., Glynn, P.W.: Tail asymptotics for the maximum of perturbed random walk. Ann. Appl. Probab. 16(3), 1411–1431 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  7. Burkholder, D.L., Davis, B.J., Gundy R.F.: Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), vol. II: Probability Theory, pp. 223–240. University of California Press, Berkeley, CA (1972)

  8. Burkholder, D.L., Gundy, R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chow, Y.S.: On the moments of ladder epochs for driftless random walks. J. Appl. Probab. 31A, 201–205 (1994). Studies in applied probability

    Article  Google Scholar 

  10. Chow, Y.S., Robbins, H., Siegmund, D.: The Theory of Optimal Stopping. Dover Publications Inc., New York (1991) Corrected reprint of the 1971 original

  11. Doney, R.A., O’Brien, G.L.: Loud shot noise. Ann. Appl. Probab. 1(1), 88–103 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Erickson, K.B.: The strong law of large numbers when the mean is undefined. Trans. Am. Math. Soc. 185, 371–381 (1973)

    Article  MathSciNet  Google Scholar 

  13. Fill, J.A., Huber, M.L.: Perfect simulation of Vervaat perpetuities. Electron. J. Probab. 15, 96–109 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gnedin, A., Iksanov, A., Marynych, A.: The Bernoulli sieve: an overview. Discrete Math. Theor. Comput. Sci. Proc., AI, pages 329–342. Assoc. Discrete Math. Theor. Comput. Sci. Nancy. Springer, London (2010)

  15. Gnedin, A., Iksanov, A., Marynych, A.: Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stoch. Process. 16(32)(2), 44–57 (2010)

    Google Scholar 

  16. Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1), 126–166 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldie, C.M., Maller, R.A.: Stability of perpetuities. Ann. Probab. 28(3), 1195–1218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gut, A.: On the moments and limit distributions of some first passage times. Ann. Probab. 2, 277–308 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gut, A.: Stopped random walks. Limit theorems and applications. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2009)

    Google Scholar 

  20. Hao, X., Tang, Q., Wei, L.: On the maximum exceedance of a sequence of random variables over a renewal threshold. J. Appl. Probab. 46(2), 559–570 (2009)

    Article  MathSciNet  Google Scholar 

  21. Hitczenko, P.: Comparison of moments for tangent sequences of random variables. Probab. Theory Related Fields 78(2), 223–230 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hitczenko, P.: On tails of perpetuities. J. Appl. Probab. 47(4), 1191–1194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hitczenko, P., Wesołowski, J.: Perpetuities with thin tails revisited. Ann. Appl. Probab. 19(6), 2080–2101 (2009) Corrigendum in 20(3):1177 (2010)

    Google Scholar 

  24. Hitczenko, P., Wesołowski, J.: Renorming divergent perpetuities. Bernoulli 17(3), 880–894 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iksanov, A.: Fixed points of inhomogeneous smoothing transforms. Unpublished manuscript, 2007. Thesis (habilitation)-National T. Shevchenko University of Kiev, Kiev

  26. Iksanov, A., Meiners, M.: Exponential moments of first passage times and related quantities for random walks. Electron. Commun. Probab. 15, 365–375 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Iksanov, A., Meiners, M.: Exponential rate of almost-sure convergence of intrinsic martingales in supercritical branching random walks. J. Appl. Probab. 47(2), 513–525 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Iksanov, A.M.: Parameter estimation for the radioactive contamination process. Studia Sci. Math. Hungar. 37(3–4), 237–258 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Iksanov, A.M.: Functional limit theorems for renewal shot noise processes, 2012. Preprint available at arxiv.org/abs/1202.1950

  30. Janson, S.: Moments for first-passage and last-exit times, the minimum, and related quantities for random walks with positive drift. Adv. Appl. Probab. 18(4), 865–879 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kesten, H., Maller, R.A.: Two renewal theorems for general random walks tending to infinity. Probab. Theory Related Fields 106(1), 1–38 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Konstantopoulos, T., Lin, S.-J.: Macroscopic models for long-range dependent network traffic. Queueing Syst. Theory Appl. 28(1–3), 215–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lai, T.L., Siegmund, D.: A nonlinear renewal theory with applications to sequential analysis. I. Ann. Statist. 5(5), 946–954 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lai, T.L., Siegmund, D.: A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7(1), 60–76 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lebedev, A.V.: Extremes of subexponential shot noise. Math. Notes 71(1–2), 206–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. McCormick, W.P.: Extremes for shot noise processes with heavy tailed amplitudes. J. Appl. Probab. 34(3), 643–656 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mikosch, T., Resnick, S.: Activity rates with very heavy tails. Stoch. Process. Appl. 116(2), 131–155 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Palmowski, Z., Zwart, B.: Tail asymptotics of the supremum of a regenerative process. J. Appl. Probab. 44(2), 349–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Palmowski, Z., Zwart, B.: On perturbed random walks. J. Appl. Probab. 47(4), 1203–1204 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rice, J.: On generalized shot noise. Adv. Appl. Probab. 9(3), 553–565 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schottky, W.: Spontaneous current fluctuations in electron streams. Ann. Phys. 57, 541–567 (1918)

    Article  Google Scholar 

  42. Takács, L.: On secondary stochastic processes generated by recurrent processes. Acta Math. Acad. Sci. Hungar. 7, 17–29 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  43. Uchiyama, K.: A note on summability of ladder heights and the distributions of ladder epochs for random walk. Stoch. Process. Appl. 121(9), 1938–1961 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Woodroofe, M.: Nonlinear renewal theory in sequential analysis volume 39 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1982)

Download references

Acknowledgments

The research of Gerold Alsmeyer was supported by DFG SFB 878 “Geometry, Groups and Actions”. A part of this study was done while Alexander Iksanov was visiting Münster in January/February and May 2011. Iksanov acknowledges the financial support and hospitality and also supported by a Grant awarded by the President of Ukraine (project \(\Phi \)47/012) and partly supported by a Grant from Utrecht University, the Netherlands. Research of Matthias Meiners was partly supported by DFG-grant Me 3625/1-1 and DFG SFB 878 “Geometry, Groups and Actions”. The authors thank an anonymous referee for a careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Meiners.

Appendix: Auxiliary Results

Appendix: Auxiliary Results

1.1 Auxiliary Results from Classical Random Walk Theory

This section contains some facts from classical random walk theory that are either reformulations or slight extensions of known results. The first result is a combination of Theorems 2.1 and 2.2 in [27].

Proposition 5.1

For \(a>0\), let \(V^*_a(I) := \sum _{n \ge 0} e^{an} \mathbb{P }\{S_n \in I\},\,I \subseteq \mathbb{R }\) Borel and \(V^*_a(x) := V^*_a((-\infty ,x]),\,x \in \mathbb{R }\). Further, let \(R:=-\log \inf _{t \ge 0} \mathbb{E }e^{-t \xi }\).

  1. (a)
    1. (i)

      Assume that \(\mathbb{P }\{\xi \ge 0\}=1\) and let \(\beta :=\mathbb{P }\{\xi =0\}\in [0,1)\). Then for \(a>0\) the following conditions are equivalent:

      $$\begin{aligned}&V^*_a(x) < \infty \text{ for} \text{ some/all} x\ge 0;\end{aligned}$$
      (5.1)
      $$\begin{aligned}&0 < V^*_a(I) < \infty \text{ for} \text{ some} \text{ bounded} \text{ interval} I \subseteq \mathbb{R };\end{aligned}$$
      (5.2)
      $$\begin{aligned}&a<-\log \beta \end{aligned}$$
      (5.3)

      where \(-\log \beta := \infty \) if \(\beta = 0\).

    2. (ii)

      Assume that \(\mathbb{P }\{\xi <0\}>0\). Then for \(a>0\) condition (5.1) (with \(x\in \mathbb{R }\)) is equivalent to

      $$\begin{aligned} a < R \quad \text{ or} \quad a=R \ \text{ and} \ \mathbb{E }\xi e^{-\gamma _0\xi }>0, \end{aligned}$$
      (5.4)

      where \(\gamma _0\) is the unique positive value defined by \(\mathbb{E }e^{-\gamma _0\xi }= e^{-R}\).

  2. (b)

    Whenever \(V^*_a(x)\) is finite,

    $$\begin{aligned} 0 < \liminf _{x \rightarrow \infty } e^{-\gamma x} V^*_a(x)\le \limsup _{x\rightarrow \infty } e^{-\gamma x}V^*_a(x) < \infty . \end{aligned}$$

Part (a) of the Proposition contains more equivalent criteria for the finiteness of the exponential renewal function of a random walk than Theorem 2.1 in [3]. For this reason, we decided to include a proof.

Proof

We begin with part (a)(i) and assume that \(\mathbb{P }\{\xi \ge 0\} = 1\). Then the equivalence between (5.1) and (5.3) follows from [27, Theorem 2.1(b) and (c)]. Moreover, the implication “(5.1)\(\Rightarrow \)(5.2)” is trivial. It remains to prove that \(0 < V^*_a(I) < \infty \) implies that \(a<-\log \beta \). We will use contraposition and assume that \(a \ge -\log \beta \), in particular, \(\beta > 0\). Then let \(I \subseteq [0,\infty )\) denote an arbitrary bounded interval with \(V^*_a(I) > 0\). We have to show that \(V^*_a(I)=\infty \). To this end, notice that \(V^*_a(I) > 0\) implies that \(\mathbb{P }\{S_n \in I\} > 0\) for some \(n \in \mathbb{N }\). Then, for any \(k \ge 0\), we infer

$$\begin{aligned} \mathbb{P }\{S_{n+k} \in I\} \ge \mathbb{P }\{S_n \in I, \xi _{n+1} = \ldots = \xi _{n+k} = 0\} = \mathbb{P }\{S_n \in I\} \beta ^k. \end{aligned}$$

In conclusion,

$$\begin{aligned} V^*_a(I)&= \sum _{k \ge 0} e^{ak} \mathbb{P }\{S_k \in I\} \ge \sum _{k \ge 0} e^{a(n+k)} \mathbb{P }\{S_{n+k} \in I\} \\&\ge e^{an} \mathbb{P }\{S_n \in I\} \sum _{k \ge 0} (e^a\beta )^k = \infty . \end{aligned}$$

Part (a)(ii) follows from Theorem 2.1(a) in [27].

Part (b) follows from Theorem 2.2 in [27]. \(\square \)

Lemma 5.2 will be used in the proof of Theorem 2.9.

Lemma 5.2

Let \(p>0\) and \(I \subseteq \mathbb{R }\) be an open interval such that \(0 < \mathbb{E }\left( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in I\}}\right)^p < \infty \). Then \(\mathbb{E }\left( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in J\}}\right)^p < \infty \) for any bounded interval \(J\subseteq \mathbb{R }\). In particular, \(\mathbb{E }N^*(x)^p<\infty \) for some \(x \in \mathbb{R }\) entails \(\mathbb{E }N^*(y)^p<\infty \) for every \(y \in \mathbb{R }\).

Remark 5.3

In the case that \(x \ge 0\) the second assertion was known from [31].

Proof

Let \(I = (a,b)\) such that \(0 < \mathbb{E }\left( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in I\}}\right)^p < \infty \). We assume w.l.o.g. that \(-\infty < a < b < \infty \). We first show that

$$\begin{aligned} \mathbb{E }\bigg (\sum _{n \ge 0} \mathbb{1 }_{\{|S_n| < \varepsilon \}}\bigg )^p < \infty \quad \text{ for} \text{ some} \varepsilon > 0. \end{aligned}$$
(5.5)

Pick \(\varepsilon > 0\) so small that \(I_{\varepsilon } := (a+\varepsilon ,b-\varepsilon )\) satisfies \(\mathbb{E }\left( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in I_{\varepsilon }\}}\right)^p > 0\). Then \(\mathbb{P }\{S_n \in I_{\varepsilon }\} > 0\) for some \(n \in \mathbb{N }\). In particular, \(\mathbb{P }\{\tau ^{*}(I_{\varepsilon }) < \infty \} > 0\), where \(\tau ^{*}(I_{\varepsilon }) = \inf \{n \ge 0: S_n \in I_{\varepsilon }\}\). Using the strong Markov property at \(\tau ^{*}(I_{\varepsilon })\), we get

$$\begin{aligned} \infty&> \mathbb{E }\bigg ( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in I\}}\bigg )^p \\&\ge \mathbb{E }\bigg ( \mathbb{1 }_{\{\tau ^{*}(I_{\varepsilon })<\infty \}} \sum _{n \ge \tau ^{*}(I_{\varepsilon })} \mathbb{1 }_{\{|S_n - S_{\tau ^{*}(I_{\varepsilon })}| < \varepsilon \}}\bigg )^p \\&= \mathbb{P }\{\tau ^{*}(I_{\varepsilon }) < \infty \} \, \mathbb{E }\bigg (\sum _{n \ge 0} \mathbb{1 }_{\{|S_n| < \varepsilon \}}\bigg )^p. \end{aligned}$$

Hence, (5.5) holds. Now let \(J\) be a non-empty bounded interval \(\subseteq \mathbb{R }\), and \(J_1, \ldots , J_m\) open intervals of length at most \(\varepsilon \) such that \(J \subseteq J_1 \cup \ldots \cup J_m\). Using the inequality \((x_1+\ldots +x_m)^p \le (m^{p-1}\vee 1)(x_1^p+\ldots +x_m^p),\,x_j \ge 0\) for \(j=1,\ldots ,m\), leads to

$$\begin{aligned} \mathbb{E }\bigg ( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in J\}}\bigg )^p&\le \mathbb{E }\bigg ( \sum _{k=1}^m \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in J_k\}}\bigg )^p \\&\le (m^{p-1}\vee 1) \sum _{k=1}^m \mathbb{E }\bigg ( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in J_k\}}\bigg )^p. \end{aligned}$$

Therefore, it suffices to prove the result under the additional assumption that the length of \(J\) is at most \(\varepsilon \). Using the strong Markov property at \(\tau ^{*}(J) := \inf \{n \ge 0: S_n \in J\}\) gives

$$\begin{aligned} \mathbb{E }\bigg ( \sum _{n \ge 0} \mathbb{1 }_{\{S_n \in J\}}\bigg )^p&\le \mathbb{E }\bigg ( \mathbb{1 }_{\{\tau ^{*}(J)<\infty \}} \sum _{n \ge \tau ^{*}(J)} \mathbb{1 }_{\{|S_n -S_{\tau ^{*}(J)}|<\varepsilon \}}\bigg )^p \\&= \mathbb{P }{\{\tau ^{*}(J)<\infty \}} \mathbb{E }\bigg ( \sum _{n \ge 0} \mathbb{1 }_{\{|S_n|<\varepsilon \}}\bigg )^p < \infty . \end{aligned}$$

This proves the first assertion of the lemma. Concerning the second, assume that \(\mathbb{E }N^*(x)^p<\infty \) for some \(x \in \mathbb{R }\). Then, for any \(y > x\),

$$\begin{aligned} \mathbb{E }N^*(y)^p ~\le ~ (2^{p-1} \vee 1) \bigg (\mathbb{E }N^*(x)^p+\mathbb{E }\bigg [\sum _{n \ge 0}\mathbb{1 }_{\{x<S_n \le y\}}\bigg ]^p \bigg ) ~<~ \infty , \end{aligned}$$

where the last term is finite by the first part of the lemma. \(\square \)

The following lemma summarizes properties of the functions \(A_+\) and \(J_+\) that are frequently used throughout the proofs. These properties were known before and are stated here only for the reader’s convenience. Recall from () that

$$\begin{aligned} A_+(x) := \int \limits _0^x \mathbb{P }\{\xi >y\} \, \mathrm{d}y = \mathbb{E }\min (\xi ^+, x) \quad \text{ and} \quad J_+(x):= \frac{x}{A_+(x)} \end{aligned}$$

whenever \(A_+(x) > 0\). Further, recall that \(\mathbb{U }_{p-1}(x) = \sum _{n \ge 1} n^{p-1} \mathbb{P }\{S_n \le x\}\) and, analogously, \(\mathbb{U }_{p-1}^>(x) = \sum _{n \ge 1} n^{p-1} \mathbb{P }\{S_{\tau _n^*} \le x\}\) where \(\tau _n^*\) is the \(n\)th strictly ascending ladder index of the random walk \((S_n)_{n \ge 0}\).

Lemma 5.4

Assume that \(S_n \rightarrow \infty \) a.s. Then the following assertions are true:

  1. (a)

    \(A_+(x) > 0\) for all \(x > 0\); \(A_+\) and \(J_+\) are non-decreasing.

  2. (b)

    \(\lim _{x \rightarrow \infty } J_+(x) = \infty \).

  3. (c)

    \(J_+\) is subadditive, i.e., \(J_+(x+y) \le J_+(x)+J_+(y)\) for all \(x, y \ge 0\). In particular, \(J_+(x+y) \sim J_+(x)\) as \(x \rightarrow \infty \) for any \(y \in \mathbb{R }\).

  4. (d)

    For any \(p > 0\) if \(\mathbb{U }_{p-1}(0)<\infty \), then

    $$\begin{aligned} \mathbb{U }_{p-1}(x) \asymp \mathbb{U }_{p-1}^>(x) \asymp J_+(x)^p \end{aligned}$$
    (5.6)

    as \(x \rightarrow \infty \). Moreover, with \(W(\cdot )\) denoting either \(\tau ^*(\cdot ),\,N^*(\cdot )\) or \(\rho ^*(\cdot )\), then \(\mathbb{E }W(x)^p \asymp J_+(x)^p\) whenever \(\mathbb{E }W(0)^p < \infty \).

Proof

(a) Since \(S_n \rightarrow \infty \) a.s. is assumed, \(\mathbb{P }\{\xi ^+ > 0\}=\mathbb{P }\{\xi > 0\} > 0\) and therefore \(\mathbb{P }\{\xi >y\}>0\) in a right neighborhood of \(0\). The monotonicity of \(A_+\) follows from its definition. The monotonicity of \(J_+\) and assertion (b) follow from the following representation

$$\begin{aligned} J_+(x) = \left(\int \limits _0^1 \mathbb{P }\{\xi >xy\} \, \mathrm{d}y \right)^{-1} \!\!\!, \quad x > 0. \end{aligned}$$

Regarding (c) notice that the subadditivity of \(J_+\) follows from the monotonicity of \(A_+\). \(J_+(x+y) \sim J_+(x)\) as \(x \rightarrow \infty \) immediately follows from the subadditivity of \(J_+\) together with (b).

(d) follows from equations [31, Theorems 2.1 and 2.2, Eq. (4.5)] and one of the displayed formulas on p. 28 of the cited reference. \(\square \)

Lemma 5.5

Let \(p>0\) and assume \(\lim _{k \rightarrow \infty } S_k=+\infty \) a.s. Then the following assertions are equivalent:

$$\begin{aligned} \mathbb{E }J_+ \Big (\Big | \min _{0 \le k \le \tau ^*-1} S_k \Big |\Big )^{p+1} ~&<~ \infty ; \end{aligned}$$
(5.7)
$$\begin{aligned} \mathbb{E }J_+ \Big (\Big | \inf _{k \ge 0} S_k \Big | \Big )^p ~&<~ \infty ; \end{aligned}$$
(5.8)
$$\begin{aligned} \mathbb{E }J_+(\xi ^-)^{p+1} ~&<~ \infty \end{aligned}$$
(5.9)

where \(\tau ^*:=\inf \{k \in \mathbb{N }: S_k>0\}\).

Lemma 5.5 has several predecessors, e.g., [30, Theorem 1], [2, Theorem 3], [31, Proposition 4.1], [3, Lemma 3.5]. Even though Lemma 5.5 does not follow directly from either of these results, the proofs given in [30] and [31] can be adopted to treat the present case after the observation that the function \(x \mapsto J_+(x)\) is nondecreasing and subadditive. Therefore, we omit a proof.

1.2 Elementary Facts

Lemma 5.6

Let \(1 \le p = n+ \delta \) with \(n \in \mathbb{N }_0\) and \(\delta \in (0,1]\). Then, for any \(x,y \ge 0\),

$$\begin{aligned} (x+y)^p ~\le ~ x^p+y^p+p2^{p-1}(xy^{p-1} + x^ny^{\delta }). \end{aligned}$$
(5.10)

This estimate is a variant of an estimate we have learned from [18]. For the reader’s convenience, we include a brief proof which is a slight modification of the argument given in the cited reference.

Proof

For any \(0 \le r \le 1\), we have \((1+r)^p = 1+p \int \limits _0^r (1+t)^{p-1} \mathrm{d}t\). By the mean value theorem for integrals, for some \(\gamma \in (0,r)\),

$$\begin{aligned} (1\!+\!r)^p ~=~ 1+p r (1\!+\!\gamma )^{p-1} ~\le ~ 1+ p2^{p-1}r ~\le ~ 1+p2^{p-1}r^{\delta }, \end{aligned}$$
(5.11)

where in the last step we have used that \(0 \le r \le 1\). Now let \(x, y \ge 0\). When \(x \le y\), use the first estimate in (5.11) to get \((x+y)^p \le y^p +p2^{p-1}xy^{p-1}\). When \(y \le x\) use the second estimate in (5.11) to infer \((x+y)^p \le x^p + p2^{p-1} x^n y^{\delta }\). Thus, in any case, (5.10) holds. \(\square \)

The next auxiliary result is an elementary consequence of a version of the summation by parts formula.

Lemma 5.7

Let \(b_n \ge 0\) for all \(n \in \mathbb{N }\) and \(p>1\). Then

$$\begin{aligned} \sum _{n \ge 1} n^{p-1} \sum _{k=n}^\infty b_k ~<~ \infty \quad \text{ iff} \quad \sum _{n \ge 1} n^p b_n ~<~ \infty . \end{aligned}$$

Proof

For arbitrary \(m \in \mathbb{N }\),

$$\begin{aligned} \sum _{n=1}^m n^{p-1}\sum _{k=n}^\infty b_k ~=~ \sum _{n=1}^m n^{p-1} \sum _{k=m}^\infty b_k + \sum _{k=1}^{m-1} b_k \sum _{n=1}^k n^{p-1}. \end{aligned}$$
(5.12)

In particular,

$$\begin{aligned} \sum _{n=1}^m n^{p-1} \sum _{k=n}^\infty b_k ~\ge ~ \sum _{n=1}^{m-1} b_n\sum _{k=1}^n k^{p-1}. \end{aligned}$$

Consequently, if \(\sum _{n \ge 1} n^{p-1}\sum _{k=n}^\infty b_k\) converges, then so does \(\sum _{n \ge 1} b_n\sum _{k=1}^n k^{p-1}\) and thus also \(\sum _{n \ge 1} b_n n^p\). Conversely, if the series \(\sum _{n \ge 1} n^p b_n\) converges, then \(\sum _{n \ge 1} b_n\sum _{k=1}^n k^{p-1}\) converges and, in particular,

$$\begin{aligned} \lim _{m\rightarrow \infty } \sum _{n=m}^{\infty } b_n \sum _{k=1}^n k^{p-1} ~=~ 0. \end{aligned}$$

Further,

$$\begin{aligned} 0 ~\le ~ \sum _{k=1}^m k^{p-1} \sum _{n=m}^\infty b_n ~\le ~ \sum _{n=m}^{\infty } b_n\sum _{k=1}^n k^{p-1} ~\rightarrow ~ 0 \quad \text{ as} m \rightarrow \infty . \end{aligned}$$

Letting \(m\) tend to \(\infty \) in (5.12), we conclude that \(\sum _{n \ge 1} n^{p-1}\sum _{k=n}^\infty b_k\) converges. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsmeyer, G., Iksanov, A. & Meiners, M. Power and Exponential Moments of the Number of Visits and Related Quantities for Perturbed Random Walks. J Theor Probab 28, 1–40 (2015). https://doi.org/10.1007/s10959-012-0475-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0475-7

Keywords

Mathematics Subject Classification (2010)

Navigation