Skip to main content
Log in

One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Granular alginate-based hydrogels were prepared in situ in an aqueous solution via grafting and crosslinking reactions among sodium alginate (SA), acrylic acid (AA), polyvinylpyrrolidone (PVP), and gelatin (GE). Fourier transform infrared spectra, elemental analysis, and scanning electrical microscopy revealed that AA monomers were grafted onto an SA backbone, and that PVP and GE were present in the hydrogel network as linear interpenetrating components. The grafting polymerization and crosslinking reaction between only SA and AA yielded a bulk gel, but the introduction of PVP and GE into the reaction mixture led to the formation of granular products. Electrostatic and hydrogen-bonding interactions among SA, PAA, PVP, and GE were the main driving forces for the formation of granular products. The adsorption isotherms and adsorption kinetics were evaluated for the adsorption of model heavy-metal ions on one of the hydrogels. The results indicated that the hydrogel has satisfactory adsorption capacities (3.028 mmol/g, Ni2+; 3.146 mmol/g, Cu2+; 2.911 mmol/g, Zn2+; 2.862 mmol/g, Cd2+), adsorption rates, and recovery capacities for the target metal ions. In addition, competitive adsorption results suggested that the hydrogel has a stronger affinity for Cu2+ ion than for the other ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a–e
Fig. 4 a–b
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nakason C, Wohmang T, Kaesaman A, Kiatkamjornwong S (2010) Carbohydr Polym 81:348–357

    Article  CAS  Google Scholar 

  2. Marandi GB, Mahdavinia GR, Ghafary S (2011) J Polym Res 18:1487–1499

    Article  Google Scholar 

  3. Al E, Güçlü G, İyim TB, Emik S, Özgümüş S (2008) J Appl Polym Sci 109:16–22

    Article  CAS  Google Scholar 

  4. Wang WB, Wang AQ (2010) Carbohydr Polym 82:83–91

    Article  CAS  Google Scholar 

  5. Kevadiya BD, Joshi GV, Mody HM, Bajaj HC (2011) Appl Clay Sci 52:364–367

    Article  CAS  Google Scholar 

  6. Ngadaonye JI, Cloonan MO, Geever LM, Higginbotham CL (2011) J Polym Res 18:2307–2324

    Article  CAS  Google Scholar 

  7. Güçlü G, Al E, Emik S, İyim TB, Özgümüş S, Özyürek M (2009) Polym Bull 65:333–346

    Article  Google Scholar 

  8. Guilherme MR, Reis AV, Paulino AT, Fajardo AR, Muniz EC, Tambourgi EB (2007) J Appl Polym Sci 105:2903–2909

    Article  CAS  Google Scholar 

  9. Milosavljević NB, Ristić MĐ, Perić-Grujić AA, Filipović JM, Štrbac SB, Rakočević ZLJ, Krušić MTK (2011) Colloids Surf A 388:59–69

    Article  Google Scholar 

  10. Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S (2010) Polym Deg Stab 95:1894–1902

    Article  CAS  Google Scholar 

  11. Léger B, Menuel S, Ponchel A, Hapiot F, Monflier E (2012) Adv Synth Catal 354:1269–1272

    Article  Google Scholar 

  12. Saikia AK, Mandal UK, Aggarwal S (2012) J Polym Res 19:9871

    Article  Google Scholar 

  13. Román J, Cabañas MV, Peña J, Vallet-Regí M (2011) Sci Technol Adv Mater 12:045003

    Article  Google Scholar 

  14. Zhu JM (2010) Biomaterials 31:4639–4656

    Article  CAS  Google Scholar 

  15. Sud D, Mahajan G, Kaur MP (2008) Bioresource Technol 99:6017–6027

    Article  CAS  Google Scholar 

  16. Demirbas A (2008) J Hazard Mater 157:220–229

    Article  CAS  Google Scholar 

  17. Liu Y, Wang WB, Wang AQ (2010) Desalination 259:258–264

    Article  CAS  Google Scholar 

  18. Zheng YA, Hua SB, Wang AQ (2010) Desalination 263:170–175

    Article  CAS  Google Scholar 

  19. Şolpan D, Duran S, Saraydin D, Güven O (2003) Rad Phys Chem 66:117–127

    Article  Google Scholar 

  20. Chen H, Wang AQ (2009) J Hazard Mater 165:223–231

    Article  CAS  Google Scholar 

  21. Pekel N, Güven O (2003) Colloids Surf A 212:155–161

    Article  CAS  Google Scholar 

  22. Çaykara T, İnam R (2003) J Appl Polym Sci 89:2013–2018

    Article  Google Scholar 

  23. Song F, Tang DL, Wang XL, Wang YZ (2011) Biomacromoles 12:3369–3380

    Article  CAS  Google Scholar 

  24. Avérous L, Pollet E (2012) Biodegradable polymers. In: Environmental silicate nano-biocomposites. Springer, London, pp 13–39

  25. Ray SS, Bousmina M (2005) Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  26. Stewart TJ, Yau JH, Allen MM, Brabander DJ, Flynn NT (2009) Colloid Polym Sci 287:1033–1040

    Article  CAS  Google Scholar 

  27. Sand A, Yadav M, Mishra DK, Behari K (2010) Carbohydr Polym 80:1147–1154

    Article  CAS  Google Scholar 

  28. Yadav M, Mishra DK, Sand A, Behari K (2011) Carbohydr Polym 84:83–89

    Article  CAS  Google Scholar 

  29. Helwa Y, Dave N, Froidevaux R, Samadi A, Liu JW (2012) ACS Appl Mater Interf 4:2228–2233

    Article  CAS  Google Scholar 

  30. Liu MZ, Liang R, Zhan FL, Liu Z, Niu AZ (2007) Polym Int 56:729–737

    Article  CAS  Google Scholar 

  31. Hua Y, Jiang XQ, Ding Y, Ge HX, Yuan YY, Yang CZ (2002) Biomaterials 23:3193–3201

    Article  Google Scholar 

  32. Xie YT, Wang AQ (2009) J Polym Res 16:143–150

    Article  CAS  Google Scholar 

  33. Robinson BV, Sullivan FM, Borzelleca JF, Schwartz SL (1990) PVP: a critical review of the kinetics and toxicology of polyvinylpyrrolidone (Povidone), 1st edn. Lewis, Chelsea

    Google Scholar 

  34. Hu YG, Zhao T, Zhu PL, Sun R (2012) Colloid Polym Sci 290:401–409

    Article  CAS  Google Scholar 

  35. Pourjavadi A, Farhadpour B, Seidi F (2008) Starch-Starke 60:457–466

    Article  CAS  Google Scholar 

  36. Jin SP, Liu MZ, Zhang F, Chen SL, Niu AZ (2006) Polymer 47:1526–1532

    Article  CAS  Google Scholar 

  37. Žugić D, Spasojević P, Petrović Z, Djonlagić J (2009) J Appl Polym Sci 113:1593–1603

    Article  Google Scholar 

  38. Jaiswal M, Koul V, Dinda AK, Mohanty S, Jain KG (2011) J Biomed Mater Res B 98B:342–350

    Article  CAS  Google Scholar 

  39. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  40. Freundlich HMF (1906) Z Phys Chem 57:385–470

    CAS  Google Scholar 

  41. Dubinin MM, Radushkevich LV (1947) Equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR 55:331–333

    Google Scholar 

  42. Rudzinsk W, Plazinski W (2006) J Phys Chem B 110:16514–16525

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (nos. 51003112 and 21107116)) and the Science and Technology Support Project of Jiangsu Provincial Sci. & Tech. Department (no. BY2010012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Kang, Y. & Wang, A. One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20, 101 (2013). https://doi.org/10.1007/s10965-013-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0101-0

Keywords

Navigation