Skip to main content
Erschienen in: Journal of Polymer Research 7/2014

01.07.2014 | Original Paper

Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications

verfasst von: Ali Gheibi, Masoud Latifi, Ali Akbar Merati, Roohollah Bagherzadeh

Erschienen in: Journal of Polymer Research | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research focuses on fabricating a one-step nano-generator based on electrospun nanofibrous materials for wearable electronics textiles applications. A nanofibrous structure from Poly (vinylidene fluoride), PVDF, was produced using electrospinning technique. Performances of these structures were evaluated by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). Piezoelectric properties of fabricated composites also were evaluated on a self-made system as a function of frequency. Results showed that not only electrospinning process can effectively improve piezoelectric properties of nanofiber mats by changing the crystalline structure (e.g. create the β-phase) compared to PVDF film samples, but also the fibrous structure of these materials interestingly can be used in the wearable electronic textiles. By using a novel approach to fabricate the nanofiber layer along with incorporating the electrodes within the structure of the device, the electrical output was improved as high as 1 volt. These results imply promising applications for various wearable self-powered electrical devices and systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371CrossRef
2.
Zurück zum Zitat Fang J, Wang X, Lin T (2012) Power Generation from Randomly Oriented Electrospun Nanofiber Membranes. Advanced Materials Research 479–481:340–343CrossRef Fang J, Wang X, Lin T (2012) Power Generation from Randomly Oriented Electrospun Nanofiber Membranes. Advanced Materials Research 479–481:340–343CrossRef
3.
Zurück zum Zitat Wang ZL (2008) Self-powering nanotech. Scientific American 298:82–87CrossRef Wang ZL (2008) Self-powering nanotech. Scientific American 298:82–87CrossRef
4.
Zurück zum Zitat Huang C-T, Song J, Lee W-F, Ding Y, Gao Z, Hao Y, Chen L-J, Wang ZL (2010) GaN Nanowire Arrays for High-Output Nanogenerators AM CHEM SOC 132:4766–4771 Huang C-T, Song J, Lee W-F, Ding Y, Gao Z, Hao Y, Chen L-J, Wang ZL (2010) GaN Nanowire Arrays for High-Output Nanogenerators AM CHEM SOC 132:4766–4771
5.
Zurück zum Zitat Nechibvute A, Chawanda A, Luhanga P (2012) Piezoelectric Energy Harvesting Devices: An Alternative Energy Source forWireless Sensors. Smart Materials Research 2012:1–13CrossRef Nechibvute A, Chawanda A, Luhanga P (2012) Piezoelectric Energy Harvesting Devices: An Alternative Energy Source forWireless Sensors. Smart Materials Research 2012:1–13CrossRef
6.
Zurück zum Zitat Bagherzadeh R, Najar SS, Latifi M, Tehran MA, Kong LX (2013) A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. Journal of Biomedical Material Research Part A, 101A:2107–2117 Bagherzadeh R, Najar SS, Latifi M, Tehran MA, Kong LX (2013) A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. Journal of Biomedical Material Research Part A, 101A:2107–2117
7.
Zurück zum Zitat Wang ZL, Song JH (2006) Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312:242–246CrossRef Wang ZL, Song JH (2006) Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312:242–246CrossRef
8.
Zurück zum Zitat Lu MY, Song J, Lu MP, Lu CY, Lee LJ, Wang C, Wang ZL (2009) ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. ACS Nano 3:362 Lu MY, Song J, Lu MP, Lu CY, Lee LJ, Wang C, Wang ZL (2009) ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. ACS Nano 3:362
9.
Zurück zum Zitat Huang C-T, Song J, Tsai C-M, Lee W-F, Lien D-H, Gao Z, Hao Y, Chen L-J, Wang ZL (2010) Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage. Adv Mater 22:1–6CrossRef Huang C-T, Song J, Tsai C-M, Lee W-F, Lien D-H, Gao Z, Hao Y, Chen L-J, Wang ZL (2010) Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage. Adv Mater 22:1–6CrossRef
10.
Zurück zum Zitat Lu MP, Song JH, Lu MY, Chen MT, Gao YF, Chen LJ, Wang ZL (2009) Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett 9:1223–1229CrossRef Lu MP, Song JH, Lu MY, Chen MT, Gao YF, Chen LJ, Wang ZL (2009) Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett 9:1223–1229CrossRef
11.
Zurück zum Zitat Wang X, Song J, Liu J, Wang ZL (2007) Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 316:102–105CrossRef Wang X, Song J, Liu J, Wang ZL (2007) Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 316:102–105CrossRef
12.
Zurück zum Zitat Li Z, Zhu G, Yang RC, Wang A, Wang ZL (2010) Muscle-Driven In Vivo Nanogenerator. Adv Mater 22:2534–2537CrossRef Li Z, Zhu G, Yang RC, Wang A, Wang ZL (2010) Muscle-Driven In Vivo Nanogenerator. Adv Mater 22:2534–2537CrossRef
13.
Zurück zum Zitat Greeshmaa T, Balajia R, Nayakb MM, Jayakumara S (2009) The Influence of Individual Phases on Piezoelectric Coefficient of PZT-PVdF Composites. Ferroelectrics 393(1):88–93CrossRef Greeshmaa T, Balajia R, Nayakb MM, Jayakumara S (2009) The Influence of Individual Phases on Piezoelectric Coefficient of PZT-PVdF Composites. Ferroelectrics 393(1):88–93CrossRef
14.
Zurück zum Zitat Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly (vinylidene fluoride) Electrospun Membranes. Soft Materials 8(3):274–287CrossRef Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly (vinylidene fluoride) Electrospun Membranes. Soft Materials 8(3):274–287CrossRef
15.
Zurück zum Zitat Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. Journal of Materials Chemistry 21(30):11088–11091CrossRef Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. Journal of Materials Chemistry 21(30):11088–11091CrossRef
16.
Zurück zum Zitat Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly (vinylidene fluoride) Electrospun Membranes. Soft Materials 8(3):274–287CrossRef Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly (vinylidene fluoride) Electrospun Membranes. Soft Materials 8(3):274–287CrossRef
17.
Zurück zum Zitat Chang C, Tran HV, Wang J, Fuh Y-K, Lin L (2010) Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters 10(2):726–731CrossRef Chang C, Tran HV, Wang J, Fuh Y-K, Lin L (2010) Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters 10(2):726–731CrossRef
18.
Zurück zum Zitat Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy. ACS Nano 4(7):3647–3652CrossRef Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy. ACS Nano 4(7):3647–3652CrossRef
19.
Zurück zum Zitat Zheng J, He A, Li J, Han CC (2007) Polymorphism Control of Poly (vinylidenefluoride) through Electrospinning. Macromolecular Rapid Communications 28(22):2159–2162CrossRef Zheng J, He A, Li J, Han CC (2007) Polymorphism Control of Poly (vinylidenefluoride) through Electrospinning. Macromolecular Rapid Communications 28(22):2159–2162CrossRef
20.
Zurück zum Zitat Zheng J, He A, Li J, Han CC (2007) Polymorphism Control of Poly (vinylidene fluoride) through Electrospinning. Macromolecular Rapid Communications 28(22):2159–2162CrossRef Zheng J, He A, Li J, Han CC (2007) Polymorphism Control of Poly (vinylidene fluoride) through Electrospinning. Macromolecular Rapid Communications 28(22):2159–2162CrossRef
21.
Zurück zum Zitat Choia S-S, Lee YS, Joo CW, Lee SG, Park JK, Hanc K-S (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochimica Acta 50(2–3):339–343CrossRef Choia S-S, Lee YS, Joo CW, Lee SG, Park JK, Hanc K-S (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochimica Acta 50(2–3):339–343CrossRef
22.
Zurück zum Zitat Parka YJ, Soo Kang Y, Parka C (2005) Micropatterning of semicrystalline poly (vinylidene fluoride) (PVDF) solutions. European Polymer Journal 41(5):1002–1012CrossRef Parka YJ, Soo Kang Y, Parka C (2005) Micropatterning of semicrystalline poly (vinylidene fluoride) (PVDF) solutions. European Polymer Journal 41(5):1002–1012CrossRef
23.
Zurück zum Zitat S S, Santosh P, P. K. G, K. B. R V (2011) Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bulletin of Materials Science 34 (4):727–733 S S, Santosh P, P. K. G, K. B. R V (2011) Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bulletin of Materials Science 34 (4):727–733
24.
Zurück zum Zitat Keun Yoon L, Kyu Kim B (2000) Compatibility of poly (vinylidene fluoride) (PVDF)/polyamide 12 (PA12) blends. Applied Polymer Science 78(7):1374–1380CrossRef Keun Yoon L, Kyu Kim B (2000) Compatibility of poly (vinylidene fluoride) (PVDF)/polyamide 12 (PA12) blends. Applied Polymer Science 78(7):1374–1380CrossRef
25.
Zurück zum Zitat Park J-W, Seo Y-A, Kim l, Ha C-S (2004) Investigating the Crystalline Structure of Poly (vinylidene fluoride) (PVDF) in PVDF/Silica Binary and PVDF/Poly (methyl methacrylate)/Silica Ternary Hybrid Composites Using FTIR and Solid-State 19F MAS NMR Spectroscopy. Macromolecules 37 (2):429–436 Park J-W, Seo Y-A, Kim l, Ha C-S (2004) Investigating the Crystalline Structure of Poly (vinylidene fluoride) (PVDF) in PVDF/Silica Binary and PVDF/Poly (methyl methacrylate)/Silica Ternary Hybrid Composites Using FTIR and Solid-State 19F MAS NMR Spectroscopy. Macromolecules 37 (2):429–436
26.
Zurück zum Zitat Mandal D, Yoon S, Jin Kim K (2011) Origin of Piezoelectricity in an Electrospun Poly (vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor. Macromolecular Rapid Communications 32(11):831–837CrossRef Mandal D, Yoon S, Jin Kim K (2011) Origin of Piezoelectricity in an Electrospun Poly (vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor. Macromolecular Rapid Communications 32(11):831–837CrossRef
27.
Zurück zum Zitat Xia Q, Zhao XJ, Chen SJ, Ma WZ, Zhang j, Wang XL (2010) Effect of solution-blended poly (styrene-co-acrylonitrile) copolymer on crystallization of poly (vinylidene fluoride). express polymer letters 4 (5):284–291 Xia Q, Zhao XJ, Chen SJ, Ma WZ, Zhang j, Wang XL (2010) Effect of solution-blended poly (styrene-co-acrylonitrile) copolymer on crystallization of poly (vinylidene fluoride). express polymer letters 4 (5):284–291
Metadaten
Titel
Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications
verfasst von
Ali Gheibi
Masoud Latifi
Ali Akbar Merati
Roohollah Bagherzadeh
Publikationsdatum
01.07.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 7/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-014-0469-5

Weitere Artikel der Ausgabe 7/2014

Journal of Polymer Research 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.