Skip to main content
Erschienen in: Journal of Polymer Research 11/2014

01.11.2014 | Original Paper

Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior

verfasst von: Martin Přádný, Miroslava Dušková-Smrčková, Karel Dušek, Olga Janoušková, Zhansaya Sadakbayeva, Miroslav Šlouf, Jiří Michálek

Erschienen in: Journal of Polymer Research | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Macroporous hydrogels of dual porosity based on cross-linked poly(2-hydroxyethyl methacrylate) (pHEMA) were prepared, and their swelling, mechanical responses, and hydraulic permeability, as well as cell adhesion and proliferation, were examined on gel-based scaffolds. Large pores on the order of tens and hundreds of microns were generated by adding a solid porogen (fractionated particles of sodium chloride) to the polymerization mixture, which was subsequently washed out of the gel. Small pores on the order of a few microns were formed by the reaction-induced phase separation mechanism caused by addition of a diluent (1-dodecanol), which is a poor solvent for pHEMA. Morphological studies using light and electron microscopy techniques revealed that the large pores were embedded in the pHEMA matrix containing small fused spherical pores. Mechanical behavior of the dual-porosity hydrogels characterized by oscillatory shear measurements revealed that despite very high pore volume, the hydrogels were sufficiently stiff and self-supportive. The cell cultivation pilot experiment showed that the morphology (dual porosity) demonstrated marked effects on the promotion of cell adhesion, growth, and proliferation, not only on the gel surface but in the large pores within the gel bulk as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hentze HP, Antonietti M (2002) Porous polymers and resins for biotechnological and biomedical applications. Rev Mol Biotechnol 90(1):27–53CrossRef Hentze HP, Antonietti M (2002) Porous polymers and resins for biotechnological and biomedical applications. Rev Mol Biotechnol 90(1):27–53CrossRef
2.
Zurück zum Zitat Annabi N, Nichols JW, Zhong X, Ji C, Koshy S, Kahdemhosseini A, Deghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng 16(4):371–383CrossRef Annabi N, Nichols JW, Zhong X, Ji C, Koshy S, Kahdemhosseini A, Deghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng 16(4):371–383CrossRef
3.
Zurück zum Zitat Gokmen TK, Du Prez FE (2012) Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37(3):365–405CrossRef Gokmen TK, Du Prez FE (2012) Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37(3):365–405CrossRef
4.
Zurück zum Zitat Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A1217(6):902–924CrossRef Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A1217(6):902–924CrossRef
5.
Zurück zum Zitat Spiller KL, Liu Y, Holloway JL, Maher SA, Cao YL, Liu W, Zhou GD, Lowman AM (2012) A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels. Controlled release for cartilage tissue engineering. J Control Release 157(1):29–45CrossRef Spiller KL, Liu Y, Holloway JL, Maher SA, Cao YL, Liu W, Zhou GD, Lowman AM (2012) A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels. Controlled release for cartilage tissue engineering. J Control Release 157(1):29–45CrossRef
6.
Zurück zum Zitat Lee MY, Liu SW, Chen JP, Liao HT, Tsai WW, Wang HC (2011) In vitro experiments on laser sintered porous PCL scaffolds with polymer hydrogel for bone repair. J Mech Med Biol 11(5):983–992CrossRef Lee MY, Liu SW, Chen JP, Liao HT, Tsai WW, Wang HC (2011) In vitro experiments on laser sintered porous PCL scaffolds with polymer hydrogel for bone repair. J Mech Med Biol 11(5):983–992CrossRef
7.
Zurück zum Zitat Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590CrossRef Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590CrossRef
8.
Zurück zum Zitat Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater 5(1):406–418CrossRef Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering. Acta Biomater 5(1):406–418CrossRef
9.
Zurück zum Zitat Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE (2012) Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Macromol Biosci 12(3):383–394CrossRef Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE (2012) Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Macromol Biosci 12(3):383–394CrossRef
10.
Zurück zum Zitat Lozinsky VL, Plieva FM, Galaev IY, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10(4–5):163–188CrossRef Lozinsky VL, Plieva FM, Galaev IY, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10(4–5):163–188CrossRef
11.
Zurück zum Zitat Garg T, Singh O, Arora S, Murthy RSR (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29(1):1–63CrossRef Garg T, Singh O, Arora S, Murthy RSR (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29(1):1–63CrossRef
12.
Zurück zum Zitat Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef
13.
Zurück zum Zitat Savina IN, Cnudde V, D’Hollander S, Van Hoorebeke L, Mattiasson B, Galaev IY, Du Prez F (2007) Cryogels from poly(hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds. Soft Matter 3(9):1176–1184CrossRef Savina IN, Cnudde V, D’Hollander S, Van Hoorebeke L, Mattiasson B, Galaev IY, Du Prez F (2007) Cryogels from poly(hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds. Soft Matter 3(9):1176–1184CrossRef
14.
Zurück zum Zitat Liu Q, Hedberg EL, Liu Q, Bahulekar R, Meszlenyi RK, Mikos AG (2000) Preparation of macroporous poly(2-hydroxyethyl methacrylate) hydrogels by enhanced phase separation. Biomaterials 21(21):2163–2169CrossRef Liu Q, Hedberg EL, Liu Q, Bahulekar R, Meszlenyi RK, Mikos AG (2000) Preparation of macroporous poly(2-hydroxyethyl methacrylate) hydrogels by enhanced phase separation. Biomaterials 21(21):2163–2169CrossRef
15.
Zurück zum Zitat Tang C, Yin C, Pei Y, Zhang M, Wu L (2005) New superporous hydrogels composites based on aqueous Carbopol® solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. Eur Polym J 41(3):557–562CrossRef Tang C, Yin C, Pei Y, Zhang M, Wu L (2005) New superporous hydrogels composites based on aqueous Carbopol® solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. Eur Polym J 41(3):557–562CrossRef
16.
Zurück zum Zitat Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44(1):53–62CrossRef Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44(1):53–62CrossRef
17.
Zurück zum Zitat Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590CrossRef Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590CrossRef
18.
Zurück zum Zitat Ozmen MM, Dinu MV, Okay O (2008) Preparation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture at subzero temperatures. Polym Bull 60(2–3):169–180CrossRef Ozmen MM, Dinu MV, Okay O (2008) Preparation of macroporous poly(acrylamide) hydrogels in DMSO/water mixture at subzero temperatures. Polym Bull 60(2–3):169–180CrossRef
19.
Zurück zum Zitat Přádný M, Martinová L, Michálek J, Fenclová T, Krumbholcová E (2007) Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate. Cent Eur J Chem 5(3):779–792CrossRef Přádný M, Martinová L, Michálek J, Fenclová T, Krumbholcová E (2007) Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate. Cent Eur J Chem 5(3):779–792CrossRef
20.
Zurück zum Zitat Silverstein MS, Cameron NR, Hillmyer MA. Porous polymers. Wiley 2011. ISBN 978-0-470-39084-9 Silverstein MS, Cameron NR, Hillmyer MA. Porous polymers. Wiley 2011. ISBN 978-0-470-39084-9
21.
Zurück zum Zitat Kulygin O, Silverstein MS (2007) Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions. Soft Matter 3(12):1525–1529CrossRef Kulygin O, Silverstein MS (2007) Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions. Soft Matter 3(12):1525–1529CrossRef
22.
Zurück zum Zitat Gradzielski M, Hoffmann H, Oetter G (1990) Ringing gels: their structure and macroscopic properties. Colloid Polym Sci 268(2):167–178CrossRef Gradzielski M, Hoffmann H, Oetter G (1990) Ringing gels: their structure and macroscopic properties. Colloid Polym Sci 268(2):167–178CrossRef
23.
Zurück zum Zitat Dhariwala B, Hunt E, Bolant T (2004) Rapid protoyping of tissue-engineering constructs using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322CrossRef Dhariwala B, Hunt E, Bolant T (2004) Rapid protoyping of tissue-engineering constructs using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322CrossRef
24.
Zurück zum Zitat Shoichet MS (2010) Polymer scaffolds for biomaterials applications. Macromolecules 43(2):581–591CrossRef Shoichet MS (2010) Polymer scaffolds for biomaterials applications. Macromolecules 43(2):581–591CrossRef
25.
Zurück zum Zitat Lesný P, Přádný M, Jendelová P, Michálek J, Vacík J, Syková E (2006) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. J Mater Sci Mater Med 17(9):829–833CrossRef Lesný P, Přádný M, Jendelová P, Michálek J, Vacík J, Syková E (2006) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. J Mater Sci Mater Med 17(9):829–833CrossRef
26.
Zurück zum Zitat Hejcl A, Urdzikova L, Sedy J, Lesný P, Přádný M, Michálek J, Burian M, Hajek M, Zámecník J, Jendelová P, Syková E (2008) Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. J Neurosurg Spine 8(1):67–73CrossRef Hejcl A, Urdzikova L, Sedy J, Lesný P, Přádný M, Michálek J, Burian M, Hajek M, Zámecník J, Jendelová P, Syková E (2008) Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. J Neurosurg Spine 8(1):67–73CrossRef
27.
Zurück zum Zitat Park S-B, Sakamoto J, Sung M-H, Uyama H (2013) Macroscopic cavities within a microporous 3-D network: a poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique. Polymer 54:6114–6118CrossRef Park S-B, Sakamoto J, Sung M-H, Uyama H (2013) Macroscopic cavities within a microporous 3-D network: a poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique. Polymer 54:6114–6118CrossRef
28.
Zurück zum Zitat Smetana K Jr (1987) Multinucleate foreign-body giant-cell formation. Exp Mol Pathol 46(3):258–265CrossRef Smetana K Jr (1987) Multinucleate foreign-body giant-cell formation. Exp Mol Pathol 46(3):258–265CrossRef
29.
Zurück zum Zitat Přádný M, Lesný P, Fiala J, Vacík J, Šlouf M, Michálek J, Syková E (2003) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 1. Copolymers of 2-hydroxyethyl methacrylate with methacrylic acid. Collect Czech Chem Commun 68(4):812–822CrossRef Přádný M, Lesný P, Fiala J, Vacík J, Šlouf M, Michálek J, Syková E (2003) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 1. Copolymers of 2-hydroxyethyl methacrylate with methacrylic acid. Collect Czech Chem Commun 68(4):812–822CrossRef
30.
Zurück zum Zitat Přádný M, Michálek J, Lesný P, Hejcl A, Vacík J, Šlouf M, Syková E (2006) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: hydrolytically degradable materials. J Mater Sci Mater Med 17(12):1357–1364CrossRef Přádný M, Michálek J, Lesný P, Hejcl A, Vacík J, Šlouf M, Syková E (2006) Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: hydrolytically degradable materials. J Mater Sci Mater Med 17(12):1357–1364CrossRef
31.
Zurück zum Zitat Přádný M, Lesný P, Smetana K Jr, Vacík J, Šlouf M, Michálek J, Syková E (2005) Macroporous hydrogels based on 2-hydroxyethyl methacrylate - Part II - Copolymers with positive and negative charges, polyelectrolyte complexes. J Mater Sci Mater Med 16(8):767–773CrossRef Přádný M, Lesný P, Smetana K Jr, Vacík J, Šlouf M, Michálek J, Syková E (2005) Macroporous hydrogels based on 2-hydroxyethyl methacrylate - Part II - Copolymers with positive and negative charges, polyelectrolyte complexes. J Mater Sci Mater Med 16(8):767–773CrossRef
32.
Zurück zum Zitat Gu WJ, Yao H, Huang CY, Cheung HS (2003) New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Biomechanics 36(4):593–598CrossRef Gu WJ, Yao H, Huang CY, Cheung HS (2003) New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Biomechanics 36(4):593–598CrossRef
33.
Zurück zum Zitat Quinn TM, Grodzinsky AJ (1993) Longitudinal modulus and hydraulic permeability of poly(methacrylic acid) gels: effects of charge density and solvent content. Macromolecules 26(16):4332–4338CrossRef Quinn TM, Grodzinsky AJ (1993) Longitudinal modulus and hydraulic permeability of poly(methacrylic acid) gels: effects of charge density and solvent content. Macromolecules 26(16):4332–4338CrossRef
34.
Zurück zum Zitat Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1(1):3–25CrossRef Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media 1(1):3–25CrossRef
35.
Zurück zum Zitat Serpooshan VV, Quinn TM, Muja N, Nazhat SN (2013) Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater 9(1):4673–4680CrossRef Serpooshan VV, Quinn TM, Muja N, Nazhat SN (2013) Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater 9(1):4673–4680CrossRef
36.
Zurück zum Zitat Přádný M, Šlouf M, Martinová L, Michálek J. E-Polym, 2010, No.043. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 7: Methods of preparation and comparison of resulting physical properties Přádný M, Šlouf M, Martinová L, Michálek J. E-Polym, 2010, No.043. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 7: Methods of preparation and comparison of resulting physical properties
37.
Zurück zum Zitat Johnson EM, Deen WM (1996) Hydraulic permeability of agarose gels. AIChE J 42(5):1220–1224CrossRef Johnson EM, Deen WM (1996) Hydraulic permeability of agarose gels. AIChE J 42(5):1220–1224CrossRef
38.
Zurück zum Zitat Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143CrossRef Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143CrossRef
39.
Zurück zum Zitat Tenney MR, Discher DE (2009) Stem cells, microenvironment mechanics, and growth factor activation. Curr Opin Cell Biol 21(5):630–635CrossRef Tenney MR, Discher DE (2009) Stem cells, microenvironment mechanics, and growth factor activation. Curr Opin Cell Biol 21(5):630–635CrossRef
40.
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRef Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRef
41.
Zurück zum Zitat Helmlinger G, Netti PA, Lichtenbeld HC, Melder R, Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15(8):778–783CrossRef Helmlinger G, Netti PA, Lichtenbeld HC, Melder R, Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15(8):778–783CrossRef
42.
Zurück zum Zitat Karpushkin E, Dušková-Smrčková M, Remmler T, Lapčíková M, Dušek K (2012) Rheological properties of homogeneous and heterogeneous poly(2-hydroxyethyl methacrylate) hydrogels. Polym Int 61(2):328–336CrossRef Karpushkin E, Dušková-Smrčková M, Remmler T, Lapčíková M, Dušek K (2012) Rheological properties of homogeneous and heterogeneous poly(2-hydroxyethyl methacrylate) hydrogels. Polym Int 61(2):328–336CrossRef
43.
Zurück zum Zitat Karpushkin E, Dušková-Smrčková M, Šlouf M, Dušek K (2013) Rheology and porosity control of poly(2-hydroxyethyl methacrylate) hydrogels. Polymer 54:661–672CrossRef Karpushkin E, Dušková-Smrčková M, Šlouf M, Dušek K (2013) Rheology and porosity control of poly(2-hydroxyethyl methacrylate) hydrogels. Polymer 54:661–672CrossRef
Metadaten
Titel
Macroporous 2-hydroxyethyl methacrylate hydrogels of dual porosity for cell cultivation: morphology, swelling, permeability, and mechanical behavior
verfasst von
Martin Přádný
Miroslava Dušková-Smrčková
Karel Dušek
Olga Janoušková
Zhansaya Sadakbayeva
Miroslav Šlouf
Jiří Michálek
Publikationsdatum
01.11.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 11/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-014-0579-0

Weitere Artikel der Ausgabe 11/2014

Journal of Polymer Research 11/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.