Skip to main content
Log in

A comprehensive study on kinetics of free-radical solution copolymerization of vinyl acetate and dibutyl maleate in chloroform

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Free radical solution copolymerization of vinyl acetate (VAc) and dibutyl maleate (DBM) initiated by AIBN was performed in the presence of chloroform as both solvent and chain transfer agent at various temperatures, comonomer mixture composition and initiator concentrations. Structures of the copolymers were characterized by FT-IR and 1H-NMR techniques. Effect of the above-mentioned variables on the copolymerization rate was investigated via data obtained from 1H-NMR spectra. Value of the “lumped” kinetic parameter, i.e. kp.kt −0.5, was calculated for various initial mole fractions of the comonomers. Reactivity ratios of the VAc and DBM were calculated for the first time from medium/high conversion data to be 0.1102, 0.0421, respectively, by extended KT method and 0.1135 and 0.0562, respectively, by MH method. A good fitting between the theoretical and experimental drifts in the comonomer mixture and copolymer compositions with conversion was observed, indicating accuracy of the reactivity ratios calculated for the present pair comonomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Davis T, Heuts H, Moad G, Rizzardo E (1998) Chem Aust 65:12–15

    CAS  Google Scholar 

  2. Moad G, Solomon DH (1990) Aust J Chem 43:215–239

    Article  CAS  Google Scholar 

  3. Ghosh P (2001) Polymer Science and Technology: Plastics, Rubbers, Blends and Composites, Tata McGraw-Hill Education 317–321

  4. Zhou X, Zhu J, Xing M, Zhang Z, Cheng Z, Zhou N, Zhu X (2011) Eur Polym J 47:1912–1922

    Article  CAS  Google Scholar 

  5. Immirzi B, Malinconico M, Martuscelli E (1991) Polymer 32:364–37

    Article  CAS  Google Scholar 

  6. Islam MS, Yeum JH, Das AK (2012) J Colloid Interface Sci 68:400–405

    Article  Google Scholar 

  7. Baruah SD, Sarmah D, Laskar NC (2011) J Polym Res 18:225–233

    Article  CAS  Google Scholar 

  8. Gonzalez GSM, Dimonie VL, Sudol ED, Yue HJ, Klein A, El-Aasser MS (1996) J Polym Sci A Polym Chem 34:849–862

    Article  Google Scholar 

  9. Braun D, Hu F (2006) Prog Polym Sci 31:239–276

    Article  CAS  Google Scholar 

  10. Thamazharsi S, Rami Reddy AV (1992) Eur Polym J 28:119–123

  11. Omidian H, Hashemi SA, Sammes PG, Meldrum I (1999) Polymer 40:1753–1761

    Article  CAS  Google Scholar 

  12. Lengu A, Neckers DC (1995) J Coat Technol 67:29–35

    Google Scholar 

  13. Sajjadi S, Brooks BW (1999) J Polym Sci A Polym Chem 37:3957–3972

    Article  CAS  Google Scholar 

  14. Brar AS, Goyal AK, Ganai A, Hooda S (2008) J Mol Struct 888:257–265

    Article  CAS  Google Scholar 

  15. Villat C, Pradelle-Plasse N, Picard B, Colon P (2005) Eur Cells Mat 9:33–34

    Google Scholar 

  16. Ishizua K, Yamashitaa M, Tsubaki S (1996) Polym-Plast Technol Eng 35:349–363

    Article  Google Scholar 

  17. Patel VK, Mishra AK, Vishwakarma NK, Biswas CS, Ray B (2010) Polym Bull 65:97–110

    Article  CAS  Google Scholar 

  18. Decker C, Moussa K (1989) Macromolecules 22:4455–4462

    Article  CAS  Google Scholar 

  19. Hua H, Rivard T, Dube MA (2004) Polymer 45:345–354

    Article  CAS  Google Scholar 

  20. Pekel N, Rzaev ZMO, Guven O (2004) Macromol Chem Phys 205:1088–1095

    Article  CAS  Google Scholar 

  21. Decker C (1992) J Polym Sci A Polym Chem 30:913–928

    Article  CAS  Google Scholar 

  22. Coelho A, Fonseca IM, Matos I, Marques MM, do Rego Botelho AM, Lemos M, Lemos F (2010) Appl Catal 374:170–179

    Article  CAS  Google Scholar 

  23. Sbirrazzuoli N, Girault Y, Elégant L (1995) Thermochim Acta 249:179–187

    Article  CAS  Google Scholar 

  24. Scott RA, Peppas NA (1997) AIChE J 43:135–144

    Article  CAS  Google Scholar 

  25. Abdollahi M, Alamdari P, Koolivand H, Ziaee F (2013) J Polym Res 20:239

    Article  Google Scholar 

  26. Patel JR, Patel KH, Patel RM (2009) Colloid Polym Sci 287:89–95

    Article  CAS  Google Scholar 

  27. Semsarzadeh MA, Abdollahi M (2008) Polymer 49:3060–3069

    Article  CAS  Google Scholar 

  28. Abdollahi M, Massoumi BA, Yousefi MR, Ziaee F (2012) J Appl Polym Sci 123:543–553

    Article  CAS  Google Scholar 

  29. Abdollahi M, Semsarzadeh MA (2009) Eur Polym J 45:985–995

    Article  CAS  Google Scholar 

  30. Hooda S, Goyal AK, Brar AS (2010) J Mol Struct 963:27–34

    Article  CAS  Google Scholar 

  31. Mahdavian A, Abdollahi M, Mokhtabad L, Ziaee F (2006) J Macromol Sci A 43:1583–1596

    Article  CAS  Google Scholar 

  32. Lee H, Pack JW, Wang W, Thurecht KJ, Howdle SM (2010) Macromolecules 43:2276–2282

    Article  CAS  Google Scholar 

  33. Wu J, Oh JK, Yang J, Winnik MA (2003) Macromolecules 36:8139–8147

    Article  CAS  Google Scholar 

  34. Farinha JPS, Wu J, Winnik MA, Farwaha R, Rademacher J (2005) Macromolecules 38:4393–4402

    Article  CAS  Google Scholar 

  35. Wu J, Tomba JP, Winnik MA, Farwaha R, Rademacher J (2004) Macromolecules 37:2299–2306

    Article  CAS  Google Scholar 

  36. Wu J, Tomba JP, Winnik MA, Farwaha R, Rademacher J (2004) Macromolecules 37:4247–4253

    Article  CAS  Google Scholar 

  37. Pitchumani S, Rami Reddy C, Rajadurai S (1982) J Polym Sci A 20:277–282

    CAS  Google Scholar 

  38. Polic AL, Duever TA, Penlidis A (1998) J Polym Sci A 36:813–822

    Article  CAS  Google Scholar 

  39. Semsarzadeh MA, Abdollahi M (2008) J Appl Polym Sci 110:1784–1796

    Article  CAS  Google Scholar 

  40. Hutchinson RA, Paquet DA Jr, McMinn JH, Beuermann S, Fuller RE, Jackson C (1995) DECHEMA Monogr 131:467–493

    CAS  Google Scholar 

  41. Junkers T, Voll D, Barner-Kowollik C (2009) e-Polymers, article no. 076.

  42. Mayo FR, Lewis FM (1944) J Am Chem Soc 66:1594–1601

    Article  CAS  Google Scholar 

  43. Fineman M, Ross SD (1950) J Polym Sci 5:259–262

    Article  CAS  Google Scholar 

  44. Kelen T, Tudos F (1975) J Macromol Sci A 9:1–27

    Article  Google Scholar 

  45. Kelen T, Tudos F (1981) J Macromol Sci A 16:1283–1297

    Article  Google Scholar 

  46. Mao R, Huglin MB (1994) Polymer 5:3525–3529

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Research Institute of Petroleum Industry (Tehran, Iran) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ebrahim Ahmadi or Mahdi Abdollahi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahdar, S.S., Ahmadi, E., Abdollahi, M. et al. A comprehensive study on kinetics of free-radical solution copolymerization of vinyl acetate and dibutyl maleate in chloroform. J Polym Res 21, 582 (2014). https://doi.org/10.1007/s10965-014-0582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0582-5

Keywords

Navigation