Skip to main content
Erschienen in: Journal of Polymer Research 12/2014

01.12.2014 | Original Paper

Kinetics study of living microemulsion polymerization mediated by reversible addition-fragmentation chain transfer

verfasst von: Jianying Ma, Huixuan Zhang

Erschienen in: Journal of Polymer Research | Ausgabe 12/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reversible addition-fragmentation chain transfer (RAFT) polymerization is usually carried out in emulsion or miniemulsion, often encounters problems of rate retardation, phase separation, and loss of activity in these systems. Compared with emulsion or miniemulsion, microemulsion remains stable during polymerization because of presence of large amount surfactant that promotes formation of large number of monomer swollen micelles. Therefore, microemulsion typically shows fast polymerization rate and produces latex nanoparticles composed of high molecular weights polymers. Until now, only few RAFT polymerizations have been successfully conducted in microemulsion and related kinetics studies are very limited. Here, kinetics studies on RAFT microemulsion polymerization were carried out and the factors that affected kinetics were detailedly investigated. Kinetic parameters, theoretical molecular weights, chain transfer constant, propagate rate constant, half reaction time and polymerization rate constant were all calculated. Experimental results indicated temperature and concentration of chain transfer agent were important factors which influenced polymerization kinetics. In addition, the chemical structure of chain transfer agent, molecular weights and its distribution, and the morphologies structure of polymers were characterized by 1H NMR, FT-IR, GPC and TEM, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gravano SM, Patten TE (2007) In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: precise synthesis, materials properties, applications, vol 2. WILEY-VCH, Weinheim, Germany Gravano SM, Patten TE (2007) In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: precise synthesis, materials properties, applications, vol 2. WILEY-VCH, Weinheim, Germany
2.
Zurück zum Zitat Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146CrossRef Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146CrossRef
3.
Zurück zum Zitat Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process-a first update. Aust J Chem 59:669–692CrossRef Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process-a first update. Aust J Chem 59:669–692CrossRef
4.
Zurück zum Zitat Barner-Kowollik C, Buback M, Charleux B, Coote ML, Drache M, Fukuda T, Goto A, Klumperman B, Lowe AB, Mcleary JB, Moad G, Monteiro MJ, Sanderson RD, Tonge MP, Vana P (2006) Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I The current situation. J Polym Sci A Polym Chem 44:5809–5831CrossRef Barner-Kowollik C, Buback M, Charleux B, Coote ML, Drache M, Fukuda T, Goto A, Klumperman B, Lowe AB, Mcleary JB, Moad G, Monteiro MJ, Sanderson RD, Tonge MP, Vana P (2006) Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I The current situation. J Polym Sci A Polym Chem 44:5809–5831CrossRef
5.
Zurück zum Zitat Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRef Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRef
6.
Zurück zum Zitat Szwarc M (1956) Living polymerization of styrene. Nature 178:1168–1175CrossRef Szwarc M (1956) Living polymerization of styrene. Nature 178:1168–1175CrossRef
7.
Zurück zum Zitat Hawker CJ (1997) “Living” free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures. Acc Chem Res 30:373–382CrossRef Hawker CJ (1997) “Living” free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures. Acc Chem Res 30:373–382CrossRef
8.
Zurück zum Zitat Barner-Kowollik C, Quinn JF, Morsley DR, Davis TP (2009) RAFT polymerization kinetics: how long are the cross-terminating oligomers? J Polym Sci A Polym Chem 47:3455–3466CrossRef Barner-Kowollik C, Quinn JF, Morsley DR, Davis TP (2009) RAFT polymerization kinetics: how long are the cross-terminating oligomers? J Polym Sci A Polym Chem 47:3455–3466CrossRef
9.
Zurück zum Zitat Kwak Y, Goto A, Tsujii Y, Murata Y, Komastu K, Fukuda T (2002) A kinetic study on the rate retardation in radical polymerization of styrene with addition- fragmentation chain transfer. Macromolecules 35:3026–3029CrossRef Kwak Y, Goto A, Tsujii Y, Murata Y, Komastu K, Fukuda T (2002) A kinetic study on the rate retardation in radical polymerization of styrene with addition- fragmentation chain transfer. Macromolecules 35:3026–3029CrossRef
10.
Zurück zum Zitat Buback M, Hesse P, Junkers T, Vana P (2006) Determination of addition and fragmentation rate coefficients in RAFT polymerization via time-resolved ESR spectroscopy after laser pulse initiation. Macromol Rapid Commun 27:182–187CrossRef Buback M, Hesse P, Junkers T, Vana P (2006) Determination of addition and fragmentation rate coefficients in RAFT polymerization via time-resolved ESR spectroscopy after laser pulse initiation. Macromol Rapid Commun 27:182–187CrossRef
11.
Zurück zum Zitat Le TP, Moad G, Rizzardo E, Thang SH (1998) Int Pat 980478 Chem Abstr 128:115390 Le TP, Moad G, Rizzardo E, Thang SH (1998) Int Pat 980478 Chem Abstr 128:115390
12.
Zurück zum Zitat Coote ML (2005) The kinetics of addition and fragmentation in reversible addition-fragmentation chain transfer polymerization: an ab initio study. J Phys Chem A 109:1230–1239CrossRef Coote ML (2005) The kinetics of addition and fragmentation in reversible addition-fragmentation chain transfer polymerization: an ab initio study. J Phys Chem A 109:1230–1239CrossRef
13.
Zurück zum Zitat Rotzoll R, Vana P (2008) Synthesis of poly(methyl acrylate) loops grafted onto silica nanoparticles via reversible addition-fragmentation chain transfer polymerization. J Polym Sci A Polym Chem 46:7656–7666CrossRef Rotzoll R, Vana P (2008) Synthesis of poly(methyl acrylate) loops grafted onto silica nanoparticles via reversible addition-fragmentation chain transfer polymerization. J Polym Sci A Polym Chem 46:7656–7666CrossRef
14.
Zurück zum Zitat Goto A, Fukuda T (2004) Kinetics of living radical polymerization. Prog Polym Sci 29:329–335CrossRef Goto A, Fukuda T (2004) Kinetics of living radical polymerization. Prog Polym Sci 29:329–335CrossRef
15.
Zurück zum Zitat Ochiai B, Endo T (2005) Carbon dioxide and carbon disulfide as resources for functional polymers. Prog Polym Sci 30:183–215CrossRef Ochiai B, Endo T (2005) Carbon dioxide and carbon disulfide as resources for functional polymers. Prog Polym Sci 30:183–215CrossRef
16.
Zurück zum Zitat Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410CrossRef Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410CrossRef
17.
Zurück zum Zitat Kwak Y, Goto A, Fukuda T (2004) Rate retardation in reversible addition-fragmentation chain transfer (RAFT) polymerization: further evidence for cross-termination producing 3-arm star chain. Macromolecules 37:1219–1225CrossRef Kwak Y, Goto A, Fukuda T (2004) Rate retardation in reversible addition-fragmentation chain transfer (RAFT) polymerization: further evidence for cross-termination producing 3-arm star chain. Macromolecules 37:1219–1225CrossRef
18.
Zurück zum Zitat Altarawneh IS, Gomes VG, Srour MS (2008) The influence of xanthate-based transfer agents on styrene emulsion polymerization: mathematical modeling and model validation. Macromol React Eng 2:58–79CrossRef Altarawneh IS, Gomes VG, Srour MS (2008) The influence of xanthate-based transfer agents on styrene emulsion polymerization: mathematical modeling and model validation. Macromol React Eng 2:58–79CrossRef
19.
Zurück zum Zitat Monterio MJ, Hodgson M, Hde B (2000) The influence of RAFT on the rates and molecular weight distributions of styrene in seeded emulsion polymerizations. J Polym Sci A Polym Chem 38:3864–3874CrossRef Monterio MJ, Hodgson M, Hde B (2000) The influence of RAFT on the rates and molecular weight distributions of styrene in seeded emulsion polymerizations. J Polym Sci A Polym Chem 38:3864–3874CrossRef
20.
Zurück zum Zitat Paramita D, Jerome PC (2012) Synthesis of single-core and multiple-core core-shell nanoparticles by RAFT emulsion polymerization: lead sulfide- copolymer nanocomposites. J Polym Sci A Polym Chem 50:2802–2808CrossRef Paramita D, Jerome PC (2012) Synthesis of single-core and multiple-core core-shell nanoparticles by RAFT emulsion polymerization: lead sulfide- copolymer nanocomposites. J Polym Sci A Polym Chem 50:2802–2808CrossRef
21.
Zurück zum Zitat Dong SM, Cheng SQ, Per BZ (2013) RAFT miniemulsion polymerization using dioctyl sodium sulfosuccinate. J Polym Sci A Polym Chem 51:2104–2109CrossRef Dong SM, Cheng SQ, Per BZ (2013) RAFT miniemulsion polymerization using dioctyl sodium sulfosuccinate. J Polym Sci A Polym Chem 51:2104–2109CrossRef
22.
Zurück zum Zitat Zhang Q, Yu GQ, Wan WJ, Yuan HM, Li BG, Zhu SP (2013) Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes. Macromolecules 46:1261–1267CrossRef Zhang Q, Yu GQ, Wan WJ, Yuan HM, Li BG, Zhu SP (2013) Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes. Macromolecules 46:1261–1267CrossRef
23.
Zurück zum Zitat Pallares J, Jaramill-Soto G, Flores-Catano C, Vivaldo Lima E, Liliane MFL, Penlidis A (2006) A comparision of reaction mechanisms for reversible addition-fragmentaation chain transfer polymerization using modeling tools. J Macromol Sci A Pure Appl Chem 43:1293–1322CrossRef Pallares J, Jaramill-Soto G, Flores-Catano C, Vivaldo Lima E, Liliane MFL, Penlidis A (2006) A comparision of reaction mechanisms for reversible addition-fragmentaation chain transfer polymerization using modeling tools. J Macromol Sci A Pure Appl Chem 43:1293–1322CrossRef
24.
Zurück zum Zitat Tsavalas JG, Schork FJ, Brouwer HD, Monteiro MJ (2001) Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules 34:3938–3946CrossRef Tsavalas JG, Schork FJ, Brouwer HD, Monteiro MJ (2001) Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules 34:3938–3946CrossRef
25.
Zurück zum Zitat Liu S, Kevin DH, Eric WK (2006) Reversible addition-fragmentation chain transfer polymerization in microemulsion. Macromolecules 39:4345–4350CrossRef Liu S, Kevin DH, Eric WK (2006) Reversible addition-fragmentation chain transfer polymerization in microemulsion. Macromolecules 39:4345–4350CrossRef
26.
Zurück zum Zitat Jennifer OD, Eric WK (2008) Microstructure evolution and monomer partitioning in reversible addition-fragmentation chain transfer microemulsion polymerization. Macromolecules 41:6094–6099CrossRef Jennifer OD, Eric WK (2008) Microstructure evolution and monomer partitioning in reversible addition-fragmentation chain transfer microemulsion polymerization. Macromolecules 41:6094–6099CrossRef
27.
Zurück zum Zitat Jennifer OD, Eric WK (2009) Kinetic model of reversible addition-fragmentation chain transfer polymerization in microemulsions. J Polym Sci A Polym Chem 48:604–613 Jennifer OD, Eric WK (2009) Kinetic model of reversible addition-fragmentation chain transfer polymerization in microemulsions. J Polym Sci A Polym Chem 48:604–613
28.
Zurück zum Zitat O’Donnell J, Kaler EW (2010) Reversible addition-fragmentation chain transfer in microemulsions: effect of chain transfer agent aqueous solubility. Macromolecules 43:1730–1738CrossRef O’Donnell J, Kaler EW (2010) Reversible addition-fragmentation chain transfer in microemulsions: effect of chain transfer agent aqueous solubility. Macromolecules 43:1730–1738CrossRef
29.
Zurück zum Zitat Atsushi S, Charles LM (2009) Reversible addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion system: homopolymerization, chain extension, and block copolymerization. Macromolecules 42:5043–5052CrossRef Atsushi S, Charles LM (2009) Reversible addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion system: homopolymerization, chain extension, and block copolymerization. Macromolecules 42:5043–5052CrossRef
30.
Zurück zum Zitat Ferguson CJ, Hughes RJ, Pham BTT, Hawkett BS, Gilbert RG, Serelis AK, Such CH (2002) Effective ab initio emulsion polymerization under RAFT control. Macromolecules 35:9243–9245CrossRef Ferguson CJ, Hughes RJ, Pham BTT, Hawkett BS, Gilbert RG, Serelis AK, Such CH (2002) Effective ab initio emulsion polymerization under RAFT control. Macromolecules 35:9243–9245CrossRef
31.
Zurück zum Zitat Burguiere C, Pascual S, Bui C, Varion J, Charleux B, Daavis KA, Matyjaszewski K (2001) Block copolymers of poly(styrene) and poly(acrylic acid) of various molar masses, topologies, and compositions prepared via controlled/living radical polymerization application as stabilizers in emulsion polymerization. Macromolecules 34:4439–4450CrossRef Burguiere C, Pascual S, Bui C, Varion J, Charleux B, Daavis KA, Matyjaszewski K (2001) Block copolymers of poly(styrene) and poly(acrylic acid) of various molar masses, topologies, and compositions prepared via controlled/living radical polymerization application as stabilizers in emulsion polymerization. Macromolecules 34:4439–4450CrossRef
32.
Zurück zum Zitat Stoffelbach F, Belardi B, Santos JMRCA, Tessier L, Matyjaszewski K, Charleux B (2007) Use of an amphiphilic block copolymer as a stabilizer and a macroinitiator in miniemulsion polymerization under AGET ATRP conditions. Macromolecules 40:8813–8816CrossRef Stoffelbach F, Belardi B, Santos JMRCA, Tessier L, Matyjaszewski K, Charleux B (2007) Use of an amphiphilic block copolymer as a stabilizer and a macroinitiator in miniemulsion polymerization under AGET ATRP conditions. Macromolecules 40:8813–8816CrossRef
33.
Zurück zum Zitat Stoffelbach F, Tibiletti L, Rieger CB (2008) Surfactant-free, controlled/living radical emulsion polymerization in batch conditions using a low molar mass, surface-active reversible addition-fragmentation chain transfer (RAFT) agent. Macromolecules 41:7850–7856CrossRef Stoffelbach F, Tibiletti L, Rieger CB (2008) Surfactant-free, controlled/living radical emulsion polymerization in batch conditions using a low molar mass, surface-active reversible addition-fragmentation chain transfer (RAFT) agent. Macromolecules 41:7850–7856CrossRef
34.
Zurück zum Zitat Rieger J, Grazon C, Charleux B, Alaimo D, Jerome C (2009) Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. J Polym Sci A Polym Chem 47:2373–2390CrossRef Rieger J, Grazon C, Charleux B, Alaimo D, Jerome C (2009) Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. J Polym Sci A Polym Chem 47:2373–2390CrossRef
35.
Zurück zum Zitat Rieger J, Stoffelbach F, Bui C, Alaimo D, Jerome C, Charleux B (2008) Amphiphilic poly(ethylene oxide) macromolecular RAFT agent as a stabilizer and control agent in ab initio batch emulsion polymerization. Macromolecules 41:4065–4068CrossRef Rieger J, Stoffelbach F, Bui C, Alaimo D, Jerome C, Charleux B (2008) Amphiphilic poly(ethylene oxide) macromolecular RAFT agent as a stabilizer and control agent in ab initio batch emulsion polymerization. Macromolecules 41:4065–4068CrossRef
36.
Zurück zum Zitat Zhang W, Agosto FD, Boyron O, Rieger J, Charleux B (2011) One-pot synthesis of poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) -b-polystyrene amphiphilic block copolymers and their self-assemblies in water via RAFT-mediated radical emulsion polymerization. A kinetic study. Macromolecules 44:7584–7593CrossRef Zhang W, Agosto FD, Boyron O, Rieger J, Charleux B (2011) One-pot synthesis of poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) -b-polystyrene amphiphilic block copolymers and their self-assemblies in water via RAFT-mediated radical emulsion polymerization. A kinetic study. Macromolecules 44:7584–7593CrossRef
37.
Zurück zum Zitat Urbani CN, Monteiro MJ (2009) Nanoreactors for aqueous RAFT-mediated polymerizations. Macromolecules 42:3884–3886CrossRef Urbani CN, Monteiro MJ (2009) Nanoreactors for aqueous RAFT-mediated polymerizations. Macromolecules 42:3884–3886CrossRef
38.
Zurück zum Zitat Monteiro MJ (2010) Nanoreactors for polymerizations and organic reactions. Macromolecules 43:1159–1168CrossRef Monteiro MJ (2010) Nanoreactors for polymerizations and organic reactions. Macromolecules 43:1159–1168CrossRef
39.
Zurück zum Zitat Urbani CN, Monteiro MJ (2009) RAFT-mediated emulsion polymerization of styrene in water using a reactive polymer nanoreactor. Aust J Chem 62:1528–1532CrossRef Urbani CN, Monteiro MJ (2009) RAFT-mediated emulsion polymerization of styrene in water using a reactive polymer nanoreactor. Aust J Chem 62:1528–1532CrossRef
40.
Zurück zum Zitat Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756CrossRef Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756CrossRef
41.
Zurück zum Zitat Benaglia M, Rizzardo E, Alberti A, Guerra M (2005) Searching for more effective agents and conditions for the RAFT polymerization of MMA: influence of dithioester substituents, solvent, and temperature. Macromolecules 38:3129–3140CrossRef Benaglia M, Rizzardo E, Alberti A, Guerra M (2005) Searching for more effective agents and conditions for the RAFT polymerization of MMA: influence of dithioester substituents, solvent, and temperature. Macromolecules 38:3129–3140CrossRef
42.
Zurück zum Zitat Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds [SC(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT) polymerization. Role of the free-radical leaving group (R). Macromolecules 36:2256–2272CrossRef Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds [SC(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT) polymerization. Role of the free-radical leaving group (R). Macromolecules 36:2256–2272CrossRef
43.
Zurück zum Zitat Gaynor SG, Wang JS, Matyjaszewski K (1995) Controlled radical polymerization by degenerative transfer: effect of the structure of the transfer agent. Macromolecules 28:8051–8056CrossRef Gaynor SG, Wang JS, Matyjaszewski K (1995) Controlled radical polymerization by degenerative transfer: effect of the structure of the transfer agent. Macromolecules 28:8051–8056CrossRef
44.
Zurück zum Zitat Moad CL, Moad G, Rizzardo E, Thang SH (1996) Chain transfer activity of ω-unsaturated methyl methacrylate oligomers. Macromolecules 29:7717–7726CrossRef Moad CL, Moad G, Rizzardo E, Thang SH (1996) Chain transfer activity of ω-unsaturated methyl methacrylate oligomers. Macromolecules 29:7717–7726CrossRef
45.
Zurück zum Zitat Goto A, Sato K, Tsujii Y, Fukuda T, Moad G, Rizzardo E, Thang SH (2001) Mechanism and kinetics of RAFT-based living radical polymerization of styrene and methyl methacrylate. Macromolecules 34:402–408CrossRef Goto A, Sato K, Tsujii Y, Fukuda T, Moad G, Rizzardo E, Thang SH (2001) Mechanism and kinetics of RAFT-based living radical polymerization of styrene and methyl methacrylate. Macromolecules 34:402–408CrossRef
46.
Zurück zum Zitat Moore WJ (1960) Physical chemistry. Prentice Hall Press, Englewood Cliffs Moore WJ (1960) Physical chemistry. Prentice Hall Press, Englewood Cliffs
47.
Zurück zum Zitat Prutton CF, Maron SH (1954) Fundamental principles of physical chemistry. The MacMillan Company, New York Prutton CF, Maron SH (1954) Fundamental principles of physical chemistry. The MacMillan Company, New York
48.
Zurück zum Zitat Plummer R, Goh YK, Whittaker AK, Monterio MJ (2005) Effect of impurities in cumyl dithiobenzoate on RAFT-mediated polymerizations. Macromolecules 38:5352–5355CrossRef Plummer R, Goh YK, Whittaker AK, Monterio MJ (2005) Effect of impurities in cumyl dithiobenzoate on RAFT-mediated polymerizations. Macromolecules 38:5352–5355CrossRef
49.
Zurück zum Zitat Monterio MJ (2005) Design strategies for controlling the molecular weight and rate using reversible addition-fragmentation chain transfer mediated living radical polymerization. J Polym Sci A Polym Chem 43:3189–3204CrossRef Monterio MJ (2005) Design strategies for controlling the molecular weight and rate using reversible addition-fragmentation chain transfer mediated living radical polymerization. J Polym Sci A Polym Chem 43:3189–3204CrossRef
50.
Zurück zum Zitat Atsushi G, Koichi S, Yoshinobu T, Fukuda T, Moad G, Ezio R, Thang SH (2001) Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 34:402–408CrossRef Atsushi G, Koichi S, Yoshinobu T, Fukuda T, Moad G, Ezio R, Thang SH (2001) Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 34:402–408CrossRef
Metadaten
Titel
Kinetics study of living microemulsion polymerization mediated by reversible addition-fragmentation chain transfer
verfasst von
Jianying Ma
Huixuan Zhang
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-014-0614-1

Weitere Artikel der Ausgabe 12/2014

Journal of Polymer Research 12/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.