Skip to main content
Log in

Effect of counterion on the properties of anionic waterborne polyurethane dispersions developed from cottonseed oil based polyol

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of maleated cottonseed oil polyol (MAHCSO) based, DMPA (dimethylol propionic acid) free, catalyst free waterborne polyurethane dispersions (PUDs) were synthesized. Four different tertiary amines, were employed as neutralizing agents to investigate the role of countercation on the physico-chemical properties of PUDs and their corresponding cured films. The developed PUDs were characterized by particle size analysis, zeta potential distribution, viscosity and storage stability and the cured film samples were characterized by FT-IR (ATR), DMTA (Dynamic mechanical and thermal analysis), UTM (Universal testing machine) and contact angle analyses. It was found that the waterborne PUD with countercation having more number of hydroxy alkyl chains exhibit a larger particle size, a less negative zeta potential, higher viscosity and lower storage stability, where as the corresponding cured film possesses lower thermal stability, mechanical strength and poor surface properties.

Synopsis: Cottonseed oil based ionisable polyol was synthesized by insitu ring opening hydrolysis of epoxy cotton seed oil (ECSO) followed by maleanisation to introduce carboxylic groups. The maleated polyol was used as ionic soft segment to synthesize four types of waterborne polyurethane dispersions (PUDs) using different neutralizing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gonzalez-Alvarez MJ, Paternoga J, Breul K, Cho H, Roshandel MZ, Soleimani M, Winnik MA (2017) Understanding particle formation in surfactant-free waterborne coatings prepared by emulsification of pre-formed polymers. Polym Chem 8(19):2931–2941. https://doi.org/10.1039/C7PY00387K

    Article  CAS  Google Scholar 

  2. Gogoi S, Karak N (2014) Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain Chem Eng 2(12):2730–2738. https://doi.org/10.1021/sc5006022

    Article  CAS  Google Scholar 

  3. Santamaria-Echart A, Ugarte L, García-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A (2016) Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym 151:1203–1209. https://doi.org/10.1016/j.carbpol.2016.06.069

    Article  CAS  PubMed  Google Scholar 

  4. Xia Y, Larock RC (2011) Soybean oil–isosorbide-based waterborne polyurethane–urea dispersions. ChemSusChem 4(3):386–391. https://doi.org/10.1002/cssc.201000411

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Zhou Y, He M, Dai Z (2015) Effects of soft segments on the waterproof of anionic waterborne polyurethane. Colloid Polym Sci 293(3):875–881. https://doi.org/10.1007/s00396-014-3472-9

    Article  CAS  Google Scholar 

  6. Zhang C, Madbouly SA, Kessler MR (2015) Biobased polyurethanes prepared from different vegetable oils. ACS Appl Mater Interfaces 7(2):1226–1233. https://doi.org/10.1021/am5071333

    Article  CAS  PubMed  Google Scholar 

  7. Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802. https://doi.org/10.1039/B703294C

    Article  CAS  PubMed  Google Scholar 

  8. Lu Y, Larock RC (2009) Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. ChemSusChem 2(2):136–147. https://doi.org/10.1002/cssc.200800241

    Article  CAS  PubMed  Google Scholar 

  9. Khanderay JC, Gite VV (2017) Vegetable oil-based polyurethane coatings: recent developments in India. Green Mater 1─14. https://doi.org/10.1680/jgrma.17.00009

  10. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani S (2013) Polyurethane coatings derived from 1, 2, 3-triazole-functionalized soybean oil-based polyols: studying their physical, mechanical, thermal, and biological properties. Macromolecules 46(19):7777–7788. https://doi.org/10.1021/ma401554c

    Article  CAS  Google Scholar 

  11. Islam MR, Beg MDH, Jamari SS (2014) Development of vegetable-oil-based polymers. J Appl Polym Sci 131(18). https://doi.org/10.1002/app.40787

  12. Petrović ZS, Cvetković I, Hong D, Wan X, Zhang W, Abraham TW, Malsam J (2010) Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers. Eur J Lipid Sci Technol 112(1):97–102. https://doi.org/10.1002/ejlt.200900087

    Article  CAS  Google Scholar 

  13. Guo A, Cho Y, Petrović ZS (2000) Structure and properties of halogenated and nonhalogenated soy-based polyols. J Polym Sci A Polym Chem 38(21):3900–3910. https://doi.org/10.1002/1099-0518(20001101)38:21<3900::AID-POLA70>3.0.CO;2-E

    Article  CAS  Google Scholar 

  14. Petrović ZS, Zhang W, Javni I (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6(2):713–719. https://doi.org/10.1021/bm049451s

    Article  CAS  PubMed  Google Scholar 

  15. Hao N, Wu J, Wan J, Liu Z (2017) Morphology and mechanical properties of UV-curable castor oil-based waterborne polyurethane/organic montmorillonite nanocomposites. Plast Rubber Compos 46(8):346–354. https://doi.org/10.1080/14658011.2017.1356974

    Article  CAS  Google Scholar 

  16. Athawale VD, Nimbalkar RV (2011) Polyurethane dispersions based on sardine fish oil, soybean oil, and their interesterification products. J Dispers Sci Technol 32(7):1014–1022. https://doi.org/10.1080/01932691.2010.497459

    Article  CAS  Google Scholar 

  17. Saalah S, Abdullah LC, Aung MM, Salleh MZ, Biak DRA, Basri M, Jusoh ER (2015) Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crop Prod 64:194–200. https://doi.org/10.1016/j.indcrop.2014.10.046

    Article  CAS  Google Scholar 

  18. Kim B, Yang J, Yoo S, Lee J (2003) Waterborne polyurethanes containing ionic groups in soft segments. Colloid Polym Sci 281(5):461–468. https://doi.org/10.1007/s00396-002-0799-4

    Article  CAS  Google Scholar 

  19. Yang CZ, Grasel TG, Bell JL, Register RA, Cooper SL (1991) Carboxylate-containing chain-extended polyurethanes. J Polym Sci Polym Phys 29(5):581–588. https://doi.org/10.1002/polb.1991.090290507

    Article  CAS  Google Scholar 

  20. Bao LH, Lan YJ, Zhang SF (2006) Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments. J Polym Res 13(6):507–514. https://doi.org/10.1007/s10965-006-9073-7

    Article  CAS  Google Scholar 

  21. Chen R, Zhang C, Kessler MR (2014) Anionic waterborne polyurethane dispersion from a bio-based ionic segment. RSC Adv 4(67):35476–35483. https://doi.org/10.1039/C4RA07519F

    Article  CAS  Google Scholar 

  22. KosheelaDevi PP, Tuan Noor Maznee TI, Hoong SS, Nurul'Ain H, Norhayati MN, Srihanum A et al (2016) Performance of palm oil-based dihydroxystearic acid as ionizable molecule in waterborne polyurethane dispersions. J Appl Polym Sci 133(27). https://doi.org/10.1002/app.43614

  23. Gaddam SK, Palanisamy A (2016) Anionic waterborne polyurethane dispersions from maleated cotton seed oil polyol carrying ionisable groups. Colloid Polym Sci 294(2):347–355. https://doi.org/10.1007/s00396-015-3787-1

    Article  CAS  Google Scholar 

  24. Gaddam SK, Kutcherlapati SR, Palanisamy A (2017) Self-cross-linkable anionic waterborne polyurethane–silanol dispersions from cottonseed-oil-based phosphorylated Polyol as ionic soft segment. ACS Sustain Chem Eng 5(8):6447–6455. https://doi.org/10.1021/acssuschemeng.7b00327

    Article  CAS  Google Scholar 

  25. Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith PWG (1996) Vogel’s text book of practical organic chemistry5th edn. ELBS, London, p 703

    Google Scholar 

  26. Kumar Gaddam S, Palanisamy A (2017) Anionic waterborne polyurethane-imide dispersions from cottonseed oil based ionic polyol. Ind Crop Prod 96:132–139. https://doi.org/10.1016/j.indcrop.2016.11.054

    Article  CAS  Google Scholar 

  27. Perez-Liminana MA, Aran-Ais F, Torró-Palau AM, Orgilés-Barceló AC, Martín-Martínez JM (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes 25(6):507–517. https://doi.org/10.1016/j.ijadhadh.2005.02.002

    Article  CAS  Google Scholar 

  28. Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2005) Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. J Appl Polym Sci 98(6):2514–2520. https://doi.org/10.1002/app.22141

    Article  CAS  Google Scholar 

  29. Li X, Hu J, Sun D, Zhang Y (2014) Nanosilica reinforced waterborne siloxane-polyurethane nanocomposites prepared via “click” coupling. J Coat Technol Res 11(4):517–531. https://doi.org/10.1007/s11998-013-9563-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support for this work from the CSIR XII five-year-plan project “INTELCOAT” (CSC 0114). One of the authors Sashivinay Kumar Gaddam acknowledges the Council of Scientific and Industrial Research (CSIR) for granting a Senior Research Fellowship [Award 17-06/2012(i)EU-V].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Palanisamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddam, S.K., Palanisamy, A. Effect of counterion on the properties of anionic waterborne polyurethane dispersions developed from cottonseed oil based polyol. J Polym Res 25, 186 (2018). https://doi.org/10.1007/s10965-018-1580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1580-9

Keywords

Navigation