Skip to main content
Log in

Synthesis and characterisation of low density porous polymers by reversible addition-fragmentation chain transfer (RAFT)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

PolyHIPE foams with densities of 0.05–0.1 g cm−3 have been prepared by the polymerisation of the continuous phase of high internal phase emulsions (HIPEs). The internal aqueous phase in HIPE occupies more than 74 % of the total volume, which leads to highly porous and open-cell morphologies. In this paper a method of preparing polyHIPE foams by using reversible addition-fragmentation chain transfer (RAFT) polymerisation has been investigated. Polystyrene-co-polymethyl methacrylate (PS-co-PMMA) has been studied and by using a variety of characterisation methods, it was possible to compare the polyHIPEs prepared by the conventional free radical polymerisation (FRP) to those by RAFT polymerisation. Scanning electron microscopy images have confirmed the presence of a cellular polyHIPE structure. PS-co-PMMA polyHIPEs made by RAFT have significantly narrower molecular weight distribution with values for the polydispersity index (PDI) for PS-co-PMMA between 1.46 and 2.08 compared to 4.68 observed by FRP. The effects of different concentrations of the RAFT agent on structure, glass transition temperature (T g) and PDI of PS-co-PMMA polyHIPE foams are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barby D, Haq Z (1982) Eur Pat Appl 60:138

    Google Scholar 

  2. Hainey P, Huxham IM, Rowatt B, Sherrington DC (1991) Macromolecules 24:117–121

    Article  CAS  Google Scholar 

  3. Cameron NR (2005) Polymer 46:1439–1449

    Article  CAS  Google Scholar 

  4. Cameron NR, Sherrington DC (1997) J Mater Chem 7(11):2209–2212

    Article  CAS  Google Scholar 

  5. Steckle WP Jr, Schnoonover JR, Lanier NE, Nobile A (2006) J Mater Sci 41:4055–4060

    Article  CAS  Google Scholar 

  6. Williams JM (1988) Langmuir 4:44–49

    Article  CAS  Google Scholar 

  7. Croix C, Sauvage CE, Balland-Longeau A, Duchêne A, Thibonnet J (2008) J Inorg Organomet Polym 2(18):334–343

    Article  Google Scholar 

  8. Lin Z, Yongian T, Chifeng Z, Xuan L, Houqiong Z (2002) Nucl Instrum Methods Phys Res A 480:242–245

    Article  CAS  Google Scholar 

  9. Hoisington MA, Duke JR, Apen PG (1997) Polymer 38:3347–3357

    Article  CAS  Google Scholar 

  10. Tennikova TB, Svec F, Belinskii BG (1990) J Liquid Chromatogr 13:63–70

    Article  CAS  Google Scholar 

  11. Leber N, Fay JDB, Cameron NR, Krajnc P (2007) J Polym Sci Part A: Polym Chem 45:4043–4053

    Article  CAS  Google Scholar 

  12. Stevens MP (1999) Polymer chemistry: An introduction, vol 6, 3rd edn. Oxford University Press, Inc, New York, pp 167–204

    Google Scholar 

  13. Hawker CJ, Bosman AW, Harth E (2001) Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  14. Luo Y, An-Ni Wang, Gao X (2012) Soft Matter 8:1824

    Article  CAS  Google Scholar 

  15. Favier A, Charreyre MT (2006) Macromol Rapid Commun 27:653–692

    Article  CAS  Google Scholar 

  16. Moad G, Chiefari J, Chong YK, Krstina J, Mayadunne RTA, Postma A, Rizzardo E, Thang SH (2000) Polym Int 49:993–1001

    Article  CAS  Google Scholar 

  17. Moad G, Mayadunne RTA, Rizzardo E, Skidmore M, Thang SH (2003) Macromol Symp 192:1–12

    Article  CAS  Google Scholar 

  18. Guillaneuf Y, Gigmes D, Marque SRA, Astolfi P, Greci L, Tordo P, Bertin D (2007) Macromolecules 40:3108–3114

    Article  CAS  Google Scholar 

  19. Goto A, Fukada T (2004) Prog Polym Sci 29:329–385

    Article  CAS  Google Scholar 

  20. Barner L, Davis DP, Stenzel MH, Barner-Kowollik C (2007) Macromol Rapid Commun 28:539–559

    Article  CAS  Google Scholar 

  21. Moad G, Chong YK, Postma A, Rizzardo E, Thang sh (2005) Polymer 46:8458–8468

    Article  CAS  Google Scholar 

  22. Charleux B, Nicolas J, Guerret O (2005) Macromolecules 38:5485–5492

    Article  CAS  Google Scholar 

  23. Moad G, Rizzardo E, Thang SH (2006) Aust J Chem 59:669–692

    Article  CAS  Google Scholar 

  24. Ferguson CJ, Hughes RJ, Nguyen D, Pham BTT, Gilbert RG, Serelis AK, Such CH, Hawkett B (2005) Macromolecules 38:2191–2204

    Article  CAS  Google Scholar 

  25. Williams JM (1989) Water-in-Oil Emulsions and Toroidal Microstructures, Los Alamos National Laboratory Tech. Report No. LA-11457-MS, Springfield

  26. Williams JM, Wrobleski DA (1988) Langmuir 4:656–662

    Article  CAS  Google Scholar 

  27. Barner-Kowollik C, Buback M, Charleux B, Coote ML, Drache M, Fukada T, Goto A, Klumperman B, Lowe AB, Mcleary JB, Moad G, Monteiro MJ, Sanderson RD, Tonge MP, Vana P (2006) J Polym Sci Part A: Polym Chem 44:5809–5831

    Article  CAS  Google Scholar 

  28. Stevens MP (1999) Polymer chemistry: An introduction, vol 3, 3rd edn. Oxford University Press, Inc, New York, p 70

    Google Scholar 

Download references

Acknowledgments

This work was carried out on the auspices of Atomic Weapons Establishments plc. UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wigen Nazarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, K.L., Nazarov, W., Musgrave, C.S.A. et al. Synthesis and characterisation of low density porous polymers by reversible addition-fragmentation chain transfer (RAFT). J Radioanal Nucl Chem 299, 969–975 (2014). https://doi.org/10.1007/s10967-013-2632-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2632-6

Keywords

Navigation