Skip to main content
Log in

Removal of nickel and strontium from simulated radioactive wastewater via a pellet coprecipitation-microfiltration process

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to increase the decontamination factor (DF) and concentration factor (CF) for the treatment of radioactive wastewater, a pellet coprecipitation microfiltration process which aimed at removing the neutron activation product 63Ni and fission product 90Sr was studied. In this study average DFs were (4.60 ± 0.42) × 103 for nickel and 559 ± 24 for strontium, respectively. When about 1.8 m3 wastewater was treated, the sludge volume was significantly minimised after 24 h settling and CF reached over 1 × 103. DFs and CF values were improved by 1–2 orders of magnitude in this study compared with those achieved by conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shozugawa K, Nogawa N, Matsuo M (2012) Environ Pollut 163:243–247

    Article  CAS  Google Scholar 

  2. Liu ZJ, Yang JW, Zhang ZC, Chen L, Dong YH (2012) J Radioanal Nucl Chem 291:801–809

    Article  CAS  Google Scholar 

  3. Ahmadpour A, Zabihi M, Tahmasbi M, Bastami TR (2010) J Hazard Mater 182:552–556

    Article  CAS  Google Scholar 

  4. Makrlík E, Vaňura P (2010) J Radioanal Nucl Chem 283:497–501

    Article  Google Scholar 

  5. Liu HY, Wang JL (2013) J Hazard Mater 261:307–315

    Article  CAS  Google Scholar 

  6. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701–708

    Article  CAS  Google Scholar 

  7. Malekpour A, Edrisi M, Hajialigol S, Shirzadi S (2011) J Radioanal Nucl Chem 288:663–669

    Article  CAS  Google Scholar 

  8. Sheng GD, Sheng J, Yang ST, Hu J, Wang XK (2011) J Radioanal Nucl Chem 289:129–135

    Article  CAS  Google Scholar 

  9. Zhang H, Chen L, Zhang LP, Yu XJ (2011) J Radioanal Nucl Chem 287:357–365

    Article  CAS  Google Scholar 

  10. Gok C, Gerstmann U, Aytas S (2013) J Radioanal Nucl Chem 295:777–788

    Article  CAS  Google Scholar 

  11. Chitra S, Sudha R, Kalavathi S, Mani AGS, Rao SVS, Sinha PK (2013) J Radioanal Nucl Chem 295:607–613

    Article  CAS  Google Scholar 

  12. Tan SH, Chen XG, Ye Y, Sun J, Dai LQ, Ding Q (2010) J Hazard Mater 179:559–563

    Article  CAS  Google Scholar 

  13. Luo X, Zhang GH, Wang X, Gu P (2013) J Radioanal Nucl Chem 298:931–939

    Article  CAS  Google Scholar 

  14. Kritzer P, Boukis N, Dinjus E (2000) Corrosion 56:1093–1104

    Article  CAS  Google Scholar 

  15. Knoll GF (1989) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  16. Achal V, Pan XL, Zhang DY (2012) Chemosphere 89:764–768

    Article  CAS  Google Scholar 

  17. İnan S, Altaş Y (2011) Chem Eng J 168:1263–1271

    Article  Google Scholar 

  18. Rodrigues Silva JI, De Melo Ferreira AC, Da Costa ACA (2009) J Radioanal Nucl Chem 279:909–914

    Article  CAS  Google Scholar 

  19. Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  20. Anh TKT, Yang Z, Nora J, Boudewijn M, Luc P, Van der Bart B (2012) Chem Eng Sci 79:228–238

    Article  Google Scholar 

  21. Flouret J, Barré Y, Muhr H, Plasari E (2012) Chem Eng Sci 77:176–183

    Article  CAS  Google Scholar 

  22. Lide DRE (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  23. Gamsjäger H, Wallner H, Preis W (2002) Monatsh Chem 133:225–229

    Article  Google Scholar 

  24. Wallner H, Preis W, Gamsjäger H (2002) Thermochim Acta 382:289–296

    Article  CAS  Google Scholar 

  25. Reeder RJ (1983) Mineral Chem 11:1–47

    CAS  Google Scholar 

  26. Hoffmann U, Stipp SLS (2001) Geochim Cosmochim Acta 65:4131–4139

    Article  CAS  Google Scholar 

  27. Hernandez SER, Crespo RG, Salvador ARR, Leeuw NHD (2010) Geochim Cosmochim Acta 74:1320–1328

    Article  Google Scholar 

  28. Bath GE, Thorrold SR, Jones CM, Campana SE, Mclaren JW, Lam JWH (2010) Geochim Cosmochim Acta 64:1705–1714

    Article  Google Scholar 

  29. Amiel AJ, Friedman GM, Miller DS (1973) Sedimentology 20:47–64

    Article  CAS  Google Scholar 

  30. Kinsela AS, Jones AM, Collins RN, Waite TD (2012) Sci Total Environ 416:22–31

    Article  CAS  Google Scholar 

  31. Beck R, Andreassen JP (2010) J Cryst Growth 312:2226–2238

    Article  CAS  Google Scholar 

  32. Kinsman DJJ, Holland HD (1969) Geochim Cosmochim Acta 33:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science Foundation of China (Ref. no. 51178301; 51238006). The authors are thankful for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Gu, P., Zhang, G. et al. Removal of nickel and strontium from simulated radioactive wastewater via a pellet coprecipitation-microfiltration process. J Radioanal Nucl Chem 301, 513–521 (2014). https://doi.org/10.1007/s10967-014-3162-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3162-6

Keywords

Navigation