Skip to main content
Log in

Adsorption of thorium (IV) ions from aqueous solution by magnetic chitosan resins modified with triethylene-tetramine

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The triethylene-tetramine modified magnetic chitosan sorbents (TETA-MCS) were synthesized for the adsorption of Th(IV) ions from aqueous solution. FTIR analysis indicated that the amine and hydroxyl groups of TETA-MCS were involved in the adsorption process for the formation of O, N–Th(IV) complex. Th(IV) adsorption was pH dependent and the maximum adsorption was observed at pH 4.0. The adsorption kinetic data could be interpreted by pseudo-second-order kinetic model. The equilibrium data were correlated with the Langmuir, Freundlich and Temkin models, and the maximum monolayer adsorption capacity obtained from the Langmuir model was 133.3 mg Th(IV)/g at 25 °C. Thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of adsorption. The sorbents were successfully regenerated using 0.2 M HNO3−0.1 M EDTA and exhibited good reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raje N, Reddy A (2010) Mechanistic aspects of thermal decomposition of thorium oxalate hexahydrate: a review. Thermochim Acta 505:53–58

    Article  CAS  Google Scholar 

  2. Vearrier D, Curtis J, Greenberg M (2009) Technologically enhanced naturally occurring radioactive materials. Clin Toxicol 47:393–406

    Article  CAS  Google Scholar 

  3. Ueno K, Hoshi M (1970) The precipitation of some actinide element complex ions by using hexammine cobalt(III) cation–I: the precipitation of thorium and plutonium(IV) carbonate complex ions with hexammine cobalt(III) chloride. J Inorg Nucl Chem 32:3817–3822

    Article  CAS  Google Scholar 

  4. Bayyari M, Nazal M, Khalili F (2010) The effect of ionic strength on the extraction of Thorium(IV) from nitrate solution by didodecylphosphoric acid (HDDPA). J Saudi Chem Soc 14:311–315

    Article  CAS  Google Scholar 

  5. Kiliari T, Pashalidis I (2011) Thorium determination in aqueous solutions after separation by ion-exchange and liquid extraction. J Radioanal Nucl Chem 288:753–758

    Article  CAS  Google Scholar 

  6. He Q, Chang X, Wu Q, Huang X, Hu Z, Zhai Z (2007) Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV). Anal Chim Acta 605:192–197

    Article  CAS  Google Scholar 

  7. Zhao D, Feng S, Chen C, Chen S, Xu D, Wang X (2008) Adsorption of thorium(IV) on MX-80 bentonite: effect of pH, ionic strength and temperature. Appl Clay Sci 41:17–23

    Article  CAS  Google Scholar 

  8. Li W, Tao Z (2002) Comparative study on Th(IV) sorption on alumina and silica from aqueous solutions. J Radioanal Nucl Chem 254:187–192

    Article  CAS  Google Scholar 

  9. Harikishore D, Reddy K, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201:68–93

    Google Scholar 

  10. Rojo I, Seco F, Rovira M, Giménez J, Cervantes G, Martí V, Pablo J (2009) Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J Hazard Mater 385:474–478

    CAS  Google Scholar 

  11. He F, Wang H, Wang Y, Wang X, Zhang H, Li H, Tang J (2013) Magnetic Th(IV)-ion imprinted polymers with salophen Schiff base for separation and recognition of Th(IV). J Radioanal Nucl Chem 295:167–177

    Article  CAS  Google Scholar 

  12. Humelnicu D, Dinu M, Dragan E (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 185:447–455

    Article  CAS  Google Scholar 

  13. Wang J, Peng R, Yang J, Liu Y, Hu X (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohyd Polym 84:1169–1175

    Article  CAS  Google Scholar 

  14. Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22

    Article  CAS  Google Scholar 

  15. Oshita K, Sabarudin A, Takayanagi T, Oshima M, Motomizu S (2009) Adsorption behavior of uranium(VI) and other ionic species on cross-linked chitosan resins modified with chelating moieties. Talanta 79:1031–1035

    Article  CAS  Google Scholar 

  16. Zhou L, Xu J, Liang X, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J Hazard Mater 182:439–446

    Article  Google Scholar 

  17. Latha G, George K, Kannan G, Ninan N (1991) Synthesis of a polyacrylamide chelating resin and applications in metal ion extractions. J Appl Polym Sci 43:1159–1163

    Article  CAS  Google Scholar 

  18. Aslani M, Akyil S, Eral M (2001) Thorium(IV) sorption on ignited Sarcotragus muscarum, its kinetic and thermodynamic parameters. J Radioanal Nucl Chem 250:153–157

    Article  CAS  Google Scholar 

  19. Monier M, Ayad D, Abdel-Latif D (2012) Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloids Surf B Biointerfaces 94:250–258

    Article  CAS  Google Scholar 

  20. Kawamura Y, Yoshida H, Asai S, Tanibe H (1998) Recovery of HgCl2 using polyaminated highly porous chitosan beads-effect of salt and acid. J Chem Eng Jpn 31:1–6

    Article  CAS  Google Scholar 

  21. Kazy S, Souza S, Sar P (2009) Uranium and thorium sequestration by Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  CAS  Google Scholar 

  22. Cromieres L, Moulin V, Fourest B, Guillaumont R, Giffaut E (1998) Sorption of thorium onto hematite colloids. Radiochim Acta 82:249–256

    CAS  Google Scholar 

  23. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem 270:637–640

    Article  CAS  Google Scholar 

  24. Liu J, Luo M, Yuan Z, Ping A (2013) Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J Radioanal Nucl Chem 298:1427–1434

    Article  CAS  Google Scholar 

  25. Talip Z, Eral M, Hicsonmez U (2009) Adsorption of thorium from aqueous solutions by perlite. J Environ Radioactivity 100:139–143

    Article  CAS  Google Scholar 

  26. Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451

    Article  CAS  Google Scholar 

  27. ChenY Wang J (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  28. Sun X, Huang X, Liao X, Shi B (2010) Adsorptive recovery of UO2 2+ from aqueous solutions using collagen–tannin resin. J Hazard Mater 179:295–302

    Article  CAS  Google Scholar 

  29. Ho YS, McKay G (1999) Pseudo-second-order model for sorption process. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  30. Donia AM, Atia AA, Moussa EM, El-Sherif AM, El-Magied M (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

  31. Giles CH, Mcewax TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part III. A system of classification of solution and adsorption isotherm, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface area in solution. J Chem Soc 786:3973–3993

    Article  Google Scholar 

  32. Sibel B, Rıdvan S, Arzu E, Ebru B, Adil D (2005) Elective preconcentration of thorium in the presence of UO2 2+, Ce3+, and La3+ using Th(IV)-imprinted polymer. Talanta 67:640–645

    Article  Google Scholar 

  33. Lin CR, Wang HQ, Wang YY, Zhou L, Liang J (2011) Selective preconcentration of trace thorium from aqueous solutions with Th(IV)-imprinted polymers prepared by a surface-grafted technique. Int J Environ Anal Chem 90:1050–1061

    Article  Google Scholar 

  34. Birlik E, Buyuktiryaki S, Ersoz A, Say R, Denizli A (2006) Selective separation of thorium using ion imprinted chitosan-phthalate particles via solid phase extraction. Sep Sci Technol 41:3109–3121

    Article  CAS  Google Scholar 

  35. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2 + , UO22 + , and Th4+. J Hazard Mater 151:380–388

    Article  CAS  Google Scholar 

  36. Akkaya R (2013) Removal of radioactive elements from aqueous solutions by adsorption onto polyacrylamide –expanded perlite: equilibrium, kinetic, and thermodynamic study. Desalination 321:3–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Fund Program (21366001), the National Natural Science Fund Program (21166001), the National Natural Science Fund Program (11375043), and the Scientific Research Fund from Education Bureau of Jiangxi (GJJ14473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhou, L., Jia, Y. et al. Adsorption of thorium (IV) ions from aqueous solution by magnetic chitosan resins modified with triethylene-tetramine. J Radioanal Nucl Chem 303, 347–356 (2015). https://doi.org/10.1007/s10967-014-3227-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3227-6

Keywords

Navigation