Skip to main content
Log in

Effect of O5+ ion implantation on the electrical and structural properties of Cu nanowires

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ion beam creates changes in the material along their track, not only embody the excellent properties but also tailor new materials. When the ions are implanted into the nanomaterials, they collide with the target atoms and interact through three different phenomena; electron collision, nuclear collision and charge exchange. In the present study, 1 MeV O5+ ions were implanted in copper nanowires of diameter 80 nm synthesized using template synthesis approach. Electrical and structural properties were recorded using Keithley 2400 series source meter and Rigaku X-ray diffractometer respectively, before and after the implantation. IV characteristics showed the ohmic behavior with enhancement in conductivity of copper nanowires after implantation. No structural damage in the nanowires was revealed by XRD spectra. The work done can be viewed as a positive aspect of implantation in metallic nanowires especially in 80 nm diameter Cu nanowires and may be utilized to fabricate nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dresselhaus MS, Lin YM, Rabin O, Black M R, Kong J, Dresselhaus G (2010). Nanowires. In: Springer Handbook of Nanotechnology (pp. 119–167). Springer, Berlin

  2. Liu J, Luo M, Yuan Z, Ping A (2013) J Radioanal Nucl Chem 298(2):1427–1434

    Article  CAS  Google Scholar 

  3. Ramkumar J, Chandramouleeswaran S, Naidu BS, Sudarsan V (2013) J Radioanal Nucl Chem 298:1845–1855

    Article  CAS  Google Scholar 

  4. Smidt FA (1990) Int Mater Rev 35(2):61

    Article  CAS  Google Scholar 

  5. Li X-Y, Ren Y, Chen X-J, Qiao D-Y, Yuan W-Z (2011) J Radioanal Nucl Chem 287:173–176

    Article  CAS  Google Scholar 

  6. Mayer JW, Eriksson L, Davies JA (1970) Ion Implantation in Semiconductors. Academic Press, New York

    Google Scholar 

  7. Dhara S (2007) Crit Rev Solid State 32:1–50

    Article  CAS  Google Scholar 

  8. Was GS (1990) Ion beam modification of metals: compositional and microstructural changes. Prog Surf Sci 32:211–332

    Article  Google Scholar 

  9. Dedgaonkar VG, Chabria NB, Ogale SB (1992) J Radioanal Nucl Chem 166(4):351–357

    Article  CAS  Google Scholar 

  10. Nomura K, Reuther H (2011) J Radioanal Nucl Ch 287:341–346

    Article  CAS  Google Scholar 

  11. Baia C, Liub M (2012) Nano Today 7:258–281

    Article  Google Scholar 

  12. Husain A, Hone J, Postma HWC, Huang XMH, Drake T, Barbic M, Scherer A, Roukes ML (2003) Appl Phys Lett 83:1240–1242

    Article  CAS  Google Scholar 

  13. Kim K, Yoon SJ, Kim D (2006) Opt Express 14:12419–12431

    Article  Google Scholar 

  14. Walter EC, Penner RM, Liu H, Ng KH, Zach MP, Favier F (2002) Surf Interface Anal 34:409–412

    Article  CAS  Google Scholar 

  15. Landauer R (1957) IBM J Res Dev 1(3):223

    Article  Google Scholar 

  16. Choi DS, Rheem Y, Yoo B, Myung NV, Kim YK (2010) Curr Appl Phys 10(4):1037–1040

    Article  Google Scholar 

  17. Lee JW, Kang MG, Kim B-S, Hong BH, Whang D, Hwang SW (2010) Scripta Mater 63:1009–1012

    Article  CAS  Google Scholar 

  18. Steinhogl W, Schindler G, Steinlesberger G, Engelhardt M (2002) Phys Rev B 66:075414

    Article  Google Scholar 

  19. Gehlawat D, Chauhan RP, Sonkawade RG, Chakarvarti SK (2012) Appl Phys A 106:157–164

    Article  CAS  Google Scholar 

  20. Gehlawat D, Chauhan RP, Sonkawade RG (2012) Sci Adv Mater 4:1134–1141

    Article  CAS  Google Scholar 

  21. Colli A, Fasoli A, Ronning C, Pisana S, Piscanec S, Ferrari AC (2008) Nano Lett 8:2188

    Article  CAS  Google Scholar 

  22. Kamins T, Stanley WR, Hesjedal T, Harris J (2002) Physica E 13:995–998

    Article  CAS  Google Scholar 

  23. Ronning C, Borschel C, Geburt S, Niepelt R (2010) Mater Sci Eng R 70:30–43

    Article  Google Scholar 

  24. Borschel C, Ronning C (2011) Nucl Instrum Methods B 269:2133–2138

    Article  CAS  Google Scholar 

  25. Kanungo PD, Kogler R, Nguyen-Duc K, Zakharov N, Werner P, Gosele U (2009) Nanotechnology 20:165706

    Article  Google Scholar 

  26. Huczko A (2000) Appl Phys A 70:365

    Article  CAS  Google Scholar 

  27. Cao G, Liu D (2008) Adv Colloid Interface 136:45

    Article  CAS  Google Scholar 

  28. Chakarvarti SK (2006) Proc. SPIE 6172, Smart Structures and Materials 2006: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, 61720G; doi:10.1117/12.640311

  29. Mirzaii M, Kakavand T, Talebi M, Rajabifar S (2012) J Radioanal Nucl Chem 292:261–267

    Article  CAS  Google Scholar 

  30. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison–Wesley, Boston

    Google Scholar 

  31. Wharam DA, Thornton TJ, Newbury R, Pepper M, Ahmed H, Frost JEF, Hasko DG, Peacock DC, Ritchie DA, Jones GAC (1988) J Phys C Solid State 21:L209

    Article  Google Scholar 

  32. Muller CJ, Van Ruitenbeek JM, DeJongh LJ (1992) Phys Rev Lett 69:140–143

    Article  CAS  Google Scholar 

  33. Costa-Krämer JL, Garcia N, Olin H (1997) Phys Rev B 55:12910–12913

    Article  Google Scholar 

  34. Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ (2000) Appl Phys Lett 76:1333–1335

    Article  CAS  Google Scholar 

  35. Costa-Krämer JL, Garcia N, Garcia-Mochales P, Serena PA, Marques MI, Correia A (1997) Phys Rev B 55:5416–5424

    Article  Google Scholar 

  36. Ziegler J F, Biersack J, Littmark U (2008) SRIM 2008.04: www.SRIM.org

  37. Ziegler JF, Biersack J, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New York

    Google Scholar 

  38. Li WQ, Xiao XH, Stepanov AL, Dai ZG, Wu W, Cai GX, Ren F, Jiang CZ (2013) Nanoscale Res Lett 8:175

    Article  Google Scholar 

  39. Das Kanungo P, Zakharov N, Bauer J, Breitenstein O, Werner P, Goesele U (2008) Appl Phys Lett 92:263107–263107

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Director, IUAC, New Delhi, for providing Low Energy Ion Beam Facility. The help provided by LEIBF group during the experiment is also thankfully acknowledged. Authors also acknowledge NIT Kurukshetra for SEM and XRD facilities and SAI Lab, Thapar University, Patiala for providing EDS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, R.P., Rana, P. Effect of O5+ ion implantation on the electrical and structural properties of Cu nanowires. J Radioanal Nucl Chem 302, 851–856 (2014). https://doi.org/10.1007/s10967-014-3262-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3262-3

Keywords

Navigation