Skip to main content
Log in

Mapping soil radioactivity in the Fernando de Noronha archipelago, Brazil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A radioactivity survey was conducted on some of the most alkaline volcanic islands in the world. Seventy soil samples were analysed using gamma spectrometry. 226Ra, 232Th, 40K and 137Cs (Bq kg−1) activity concentration varied from 4.6 to 550, 10 to 298, 13 to 1280 and <0.3 to 2.0, respectively. Although the concentration ranges for 232Th (228Ra) and 226Ra exceeded the worldwide range, 40K levels remained low. The lowest values of natural radionuclides were observed over the Quixaba Formation, and the highest values were observed over the Remédios Formation. The median effective dose from external radiation exposure was 0.45 mSv a−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Turhan Ş, Köse A, Varinlioğlu A, Şahin NK, Arıkan İ, Oğuz F, Yücel B, Özdemir T (2012) Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples. Geoderma 187–188:117–124

    Article  Google Scholar 

  2. Laubenstein M, Plastino W, Povinec PP, Fabbri V, Aprili P, Balata M, Bella F, Cardarelli A, Deo M, Gallese B, Ioannucci L, Nisi S, Antonecchia D, Del Pinto C, Giarrusso G (2013) Radionuclide mapping of the Molise region (Central Italy) via gamma-ray spectrometry of soil samples: relationship with geological and pedological parameters. J Radioanal Nucl Chem 298:317–323

    Article  CAS  Google Scholar 

  3. Akhtar N, Tufail M, Ashraf M (2005) Natural environmental radioactivity and estimation of radiation exposure from saline soils. Int J Environ Sci Technol 1:279–285

    Article  CAS  Google Scholar 

  4. Garba NN, Ramli AT, Saleh MA, Sanusi MS, Gabdo HT (2015) Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia. J Radioanal Nucl Chem 303:1785–1799

    CAS  Google Scholar 

  5. Matiullah A, Ahad A, Rehman S, Rehman S, Faheem M (2004) Measurement of radioactivity in the soil of Bahawalpur division, Pakistan. Radiat Prot Dosim 112:443–447

    Article  CAS  Google Scholar 

  6. Ahmad N, Matiullah A, Khatibeh AJAH (1997) Indoor radon levels and natural radioactivity in Jordanian soils. Radiat Prot Dosim 71:231–233

    Article  CAS  Google Scholar 

  7. Al-Jundi J (2002) Population doses from terrestrial gamma exposure in areas near to old phosphate mine, Rusaifa, Jordan. Radiat Meas 35:23–28

    Article  CAS  Google Scholar 

  8. Fatima I, Zaidi J, Arif M, Daud M, Ahmad SA, Tahir SN (2008) Measurement of natural radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of southern Punjab, Pakistan. Radiat Prot Dosim 128:206–212

    Article  CAS  Google Scholar 

  9. Karahan G, Bayulken A (2000) Assessment of gamma dose rates around Istanbul (Turkey). J Environ Radioact 47:213–221

    Article  CAS  Google Scholar 

  10. McAulay IR, Moran D (1988) Natural radioactivity in soil in the Republic of Ireland. Radiat Prot Dosim 24:47–49

    CAS  Google Scholar 

  11. Quindos LS, Fernandez PL, Soto J, Rodenas C, Gomez J (1994) Natural radioactivity in Spanish soils. Health Phys 66:194–200

    Article  CAS  Google Scholar 

  12. Saleh IH, Hafez AF, Elanany NH, Motaweh HA, Naim MA (2007) Radiological study on soils, foodstuff and fertilizers in the Alexandria region, Egypt. Turk J Eng Environ Sci 31:9–17

    CAS  Google Scholar 

  13. Tahir SNA, Jamil K, Zaidi JH, Arif M, Ahmed N, Ahmad SA (2005) Measurements of activity concentrations of naturally occurring radionuclides in soil samples from Punjab province of Pakistan and assessment of radiological hazards. Radiat Prot Dosim 113:421–427

    Article  CAS  Google Scholar 

  14. Pillai GS, Hameed PS, Khan SMM (2016) Natural radioactivity levels in the soils and human risk assessment in Tiruchirappalli district (Tamil Nadu, India). J Radioanal Nucl Chem 307:1265–1277

    Article  Google Scholar 

  15. UNSCEAR (2000) Sources and effects of ionizing radiation, Report to the general assembly, with scientific annexes. United Nations Scientific Committee on effects of atomic radiation, vol 1. United Nations Publication, New York

  16. Zhao Y, Yan D, Zhang Q, Zhan J, Hua H (2012) Spatial distributions of137Cs in surface soil in Jing-Jin-Ji Region, North China. J Environ Radioact 113:1–7

    Article  CAS  Google Scholar 

  17. Godoy JM, Schuch LA, Nordemann DJR, Reis VRG, Ramalho M, Recio JC, Brito RRA, Olech MA (1998)137Cs, 226,228Ra,210Pb and 40 K Concentrations in Antarctic soil, sediment and selected moss and lichen samples. J Environ Radioact 41:33–45

    Article  CAS  Google Scholar 

  18. Ritchie JC, McHenry JR (1990) Application of radioactive fallout 137Cs for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233

    Article  CAS  Google Scholar 

  19. Ritchie JC, Nearing MA, Rhoton FE (2009) Sediment budgets and source determinations using fallout Caesium-137 in a semiarid rangeland watershed, Arizona, USA. J Environ Radioact 100:637–643

    Article  CAS  Google Scholar 

  20. Walling DE, He Q (1999) Improved models for estimating soil erosion rates from Caesium-137 measurement. J Environ Qual 28:611–622

    Article  CAS  Google Scholar 

  21. UNSCEAR (1969) Report. Annex A: Radioactive contamination of the environment by nuclear tests. United Nations Scientific Committee on effects of atomic radiation. United Nations Publication, New York

  22. LaBreque JJ, Cordoves PR (2005) Caesium-137 spatial activity in surface soils near and surrounding the Gurí Reservoir (Venezuela). J Radioanal Nucl Chem 265:91–94

    Article  Google Scholar 

  23. Almeida FFM (1955) Geologia e petrologia do arquipélago de Fernando de Noronha. Departamento Nacional de Produção Mineral-DNPM, Rio de Janeiro

    Google Scholar 

  24. Almeida FFM (2002) Arquipélago de Fernando de Noronha. Schobbenhaus C, Campos D A, Queiroz ET, Winge M, Berbert-Born M. (Eds.). Serviço Geológico do Brasil-CPRM, Brasília

  25. Batistella AM (1993) Cartografia ecológica de Arquipélago de Fernando de Noronha. Master of Science Thesis. Universidade de São Paulo. São Paulo

  26. IBGE. Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br/cidadesat/painel/painel.php?codmun=260545. Accessed 27 Jan 2016

  27. Cordani UG (1970) Idade do vulcanismo no Oceano Atlântico Sul, vol 1. Instituto de Geociências e Astronomia, Boletim IGA, Brasília

    Google Scholar 

  28. Oliveira SMB, Pessenda LCR, Gouveia SEM, Favaro DIT (2009) Evidência geoquímica de solos formados pela interação de guanos com rochas vulcânicas, Ilha Rata, Fernando de Noronha (PE). Rev Inst Geoc 9:3–12

    Google Scholar 

  29. Canet A, Jacquemin R (1990) Methods for measuring radium isotopes: Gamma spectrometry In: Environmental behaviour of radium, Technical Report Series No. 310. IAEA, Vienna, pp 189–204

  30. International Atomic Energy Agency (1989). Measurement of radionuclides in food and the environment. Technical Report Series 295, A Guidebook. IAEA

  31. Singh A and Singh A (2013) Statistical software for environmental applications for data sets with and without non detect observations. ProUCL. U.S. Environmental Protection Agency. EPA/600/R-07/041

  32. U.S. Environmental Protection Agency (EPA). 2006b. Data Quality Assessment: Statistical Methods for Practitioners, EPA QA/G-9S. EPA/240/B-06/003. Office of Environmental Information, Washington, DC. Available from http://www.epa.gov/quality/qs-docs/g9s-final.pdf

  33. QGIS Development Team, 2009. QGIS Geographic information system. Open Source Geospatial Foundation. URL http://qgis.osgeo.org

  34. Ivanovich M, Harmon RS (1992) Uranium-series disequilibrium: applications to earth, marine and environmental sciences, 2nd edn. Oxford Univ Press, New York

    Google Scholar 

  35. Almeida FFM (2000) The Fernando de Noronha archipelago. In: Schobbenhaus,C., Campos DA, Queiroz,ET, Winge,M, Berbert-Born,M (Edit.) Sítios Geológicos e Paleontológicos do Brasil. http://sigep.cprm.gov.br/sitio066/sitio066english.htm.. Accessed 27 Jan 2000

  36. Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in mission (Texas) surface soils. J Radioanal Nucl Chem 305:573–582

    Article  CAS  Google Scholar 

  37. Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ Radioact 77:325–338

    Article  CAS  Google Scholar 

  38. Potoki I, Parlag O, Maslyuk V, Lengyel A, Torich Z (2015) Long-term monitoring of natural radionuclides in Uzhgorod city, Ukraine. J Radioanal Nucl Chem 306:249–255

    Article  CAS  Google Scholar 

  39. Saito K, Jacob P (1995) Gamma-ray fields in the air due to sources in the ground. Radiat Prot Dosim 58:29–45

    CAS  Google Scholar 

  40. Dowdall M, Gerland S, Lind B (2003) Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Sci Total Environ 305(1–3):229–240

    Article  CAS  Google Scholar 

  41. Malanca A, Gaidolfi L, Pessina V, Dallara G (1996) Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). J Environ Radioact 30(1):55–67

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando C. A. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, F.C.A., da C. Lauria, D., do Rio, M.A.P. et al. Mapping soil radioactivity in the Fernando de Noronha archipelago, Brazil. J Radioanal Nucl Chem 311, 577–587 (2017). https://doi.org/10.1007/s10967-016-5059-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5059-z

Keywords

Navigation