Skip to main content
Log in

Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Both metal hydroxides and chitosan have been recognized as effective scavengers for nuclide ions. However, the aggregation of metal hydroxides and the weak mechanical strength of chitosan beads greatly restricts their application. Herein, the in-situ formed Ni(OH)2 nanoparticles was immobilized in chitosan matrix to obtain a novel hybrid sorbent (CSNi) for U(VI) adsorption. The CSNi showed high affinity for U(VI) sorption, with the inner-sphere complexation as the main mechanism. The maximum mono-layer adsorption capacity for U(VI) at 298 K reached 164.2 mg/g. The U(VI) sorption was endothermic and spontaneous, and kinetically followed the pseudo-second-order model. These findings highlight the possibility of using CSNi for efficient removal of U(VI) from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Tan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Wang J (2015) Synthesis of Fe3O4@TiO2 core–shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf A 469:279–286

    Article  CAS  Google Scholar 

  2. Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Wang X (2016) High sorption of U(VI) on graphene oxides studied by batch experimental and theoretical calculations. Chem Eng J 287:448–455

    Article  CAS  Google Scholar 

  3. Zhang C, Dodge CJ, Malhotra SV, Francis AJ (2013) Bioreduction and precipitation of uranium in ionic liquid aqueous solution by Clostridium sp. Bioresour Technol 136:752–756

    Article  CAS  Google Scholar 

  4. Quinn JE, Wilkins D, Soldenhoff KH (2013) Solvent extraction of uranium from saline leach liquors using DEHPA/Alamine 336 mixed reagent. Hydrometallurgy 134:74–79

    Article  Google Scholar 

  5. Pulhani VA, Dafaut S, Hegde AG (2011) Separation of uranium from iron in ground water samples using ion exchange resins. J Radioanal Nucl Chem 294:299–302

    Article  Google Scholar 

  6. Kedari CS, Pandit SS, Gandhi PM (2013) Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier. J Membr Sci 430:188–195

    Article  CAS  Google Scholar 

  7. Ji G, Zhu G, Wang X, Wei Y, Yuan J, Gao C (2017) Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U(VI). Sep Purif Technol 174:455–465

    Article  CAS  Google Scholar 

  8. Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65

    Article  CAS  Google Scholar 

  9. Mallakpour S, Madani M (2016) Functionalized-MnO2/chitosan nanocomposites: a promising adsorbent for the removal of lead ions. Carbohydr Polym 147:53–59

    Article  CAS  Google Scholar 

  10. Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams–Application to cesium sorption. Chem Eng J 236:202–211

    Article  CAS  Google Scholar 

  11. Elabd AA, Zidan WI, Abo-Aly MM, Bakier E, Attia MS (2014) Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR120. J Environ Radioact 134:99–108

    Article  CAS  Google Scholar 

  12. Pan B, Qiu H, Nie G, Xiao L, Lv L, Zheng S (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study. Water Res 44:815–824

    Article  CAS  Google Scholar 

  13. Shao D, Ren X, Wen J, Hu S, Xiong J, Jiang T, Wang X (2016) Immobilization of uranium by biomaterial stabilized FeS nanoparticles: effects of stabilizer and enrichment mechanism. J Hazard Mater 302:1–9

    Article  CAS  Google Scholar 

  14. Roques J, Veilly E, Simoni E (2009) Periodic density functional theory investigation of the uranyl ion sorption on three mineral surfaces: a comparative study. Int J Mol Sci 10:2633–2661

    Article  CAS  Google Scholar 

  15. Dudarko OA, Gunathilake C, Wickramaratne NP, Sliesarenko VV, Zub YL, Górka J, Dai S, Jaroniec M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloids Surf A Physicochem Eng 482:1–8

    Article  CAS  Google Scholar 

  16. Galhoum AA, Atia AA, Mahfouz MG, Abdel-Rehem ST, Gomaa NA, Vincent T, Guibal E (2015) Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amine acids. J Mater Sci 50:2832–2848

    Article  CAS  Google Scholar 

  17. Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Guibal E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: equilibrium and kinetic studies. Chem Eng J 262:198–209

    Article  CAS  Google Scholar 

  18. Kyzas GZ, Kostoglou M, Lazaridis NK, Bikiaris DN (2013) N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions. J Hazard Mater 244:29–38

    Article  Google Scholar 

  19. Anirudhan TS, Radhakrishnan PG (2009) Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100:250–257

    Article  CAS  Google Scholar 

  20. Sorlier P, Viton C, Domard A (2002) Relation between solution properties and degree of acetylation of chitosan: role of aging. Biomacromol 3:1336–1342

    Article  CAS  Google Scholar 

  21. Zhao Y, Wang X, Li J, Wang X (2015) Amidoxime functionalization of mesoporous silica and its high removal of U(VI). Polym Chem 6:5376–5384

    Article  CAS  Google Scholar 

  22. Xu J, Chen M, Zhang C, Yi Z (2013) Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298:1375–1383

    Article  CAS  Google Scholar 

  23. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  24. Stopa LC, Yamaura M (2010) Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. Int J Nucl Energy Sci Technol 5:283–289

    Article  CAS  Google Scholar 

  25. Hosoba M, Oshita K, Katarina RK, Takayanagi T, Oshima M, Motomizu S (2009) Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system. Anal Chim Acta 639:51–56

    Article  CAS  Google Scholar 

  26. Wang J, Peng R, Yang J, Liu Y, Hu X (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr Polym 4:1169–1175

    Article  Google Scholar 

  27. Zhang X, Jiao C, Wang J, Liu Q, Li R, Yang P, Zhang M (2012) Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 198:412–419

    Article  Google Scholar 

  28. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan- tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  29. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO2 2+, and Th4+. J Hazard Mater 151:380–388

    Article  CAS  Google Scholar 

  30. Sabarudin A, Oshima M, Takayanagi T, Hakim L, Oshita K, Gao YH, Motomizu S (2007) Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 581:214–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Natural Science Fund (21366001; 21667001), The International Scientific and Technological Cooperation Projects (2015DFR61020), The Key Research and Development Program and The Natural Science Fund Program of Jiangxi Province (20161BBF60059; S2017ZRMSB0473).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhou or Quanshui Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45,964 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Li, Z., Zeng, K. et al. Immobilization of in-situ formed Ni(OH)2 nanoparticles in chitosan beads for efficient removal of U(VI) from aqueous solutions. J Radioanal Nucl Chem 314, 467–476 (2017). https://doi.org/10.1007/s10967-017-5407-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5407-7

Keywords

Navigation