Skip to main content
Log in

Preparation and application of alginate-Ca/attapulgite clay core/shell particle for the removal of uranium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Alginate-Ca/attapulgite clay core/shell particles were synthesized via electro-coextrusion. Affecting parameters on the removal of uranium, such as pH, initial uranium concentration, temperature and co-existing cations were investigated. The uranium adsorption process was endothermic, feasible and spontaneous. The maximum adsorption capacity of the adsorbent for uranium was 199.345 mg/g at pH 3 and at 328.15 K. The results showed that the pseudo-second-order model and the Langmuir isotherm model fitted well with the data obtained. Based on the adsorption–desorption study, the adsorbent shows excellent reusability. The mechanism of uranium adsorption on the adsorbent was a combination of ion-exchange and an electrostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yuan DZ, Chen L, Xiong X, Yuan LG, Liao SJ, Wang Y (2016) Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem Eng J 285:358–367

    Article  CAS  Google Scholar 

  2. Ren B, Fan MQ, Tan LC, Li RM, Song DL, Liu Q, Jing XY (2016) Electrospinning synthesis of porous Al2O3 nanofibers by pluronic P123 triblock copolymer surfactant and properties of uranium (VI)-sorption. Mater Chem Phys 177:190–197

    Article  CAS  Google Scholar 

  3. Rafati L, Mahvi AH, Asgari AR, Hosseini SS (2010) Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin. J Environ Sci Eng 7:147–156

    CAS  Google Scholar 

  4. Agrawal YK, Shrivastav P, Menon SK (2010) Solvent extraction, separation of uranium (VI) with crown ether. Separation and purification technology. Sep Purif Technol 20:177–183

    Article  Google Scholar 

  5. Villalobos-Rodríguez R, Montero-Cabrera ME, Esparza-Ponce HE, Herrera-Peraza EF, Ballinas-Casarrubias ML (2012) Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl Radiat Isot 70:872–881

    Article  Google Scholar 

  6. Cui H, Qian Y, Li Q, Wei Z, Zhai J (2013) Fast removal of Hg(II) ions from aqueous solution by amine-modified attapulgite. Appl Clay Sci 72:84–90

    Article  CAS  Google Scholar 

  7. Fan QH, Li P, Chen YF, Wu WS (2011) Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U (VI) from aqueous solution. J Hazard Mater 192:1851–1859

    Article  CAS  Google Scholar 

  8. Wang XH, Zheng Y, Wang AQ (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite composites. J Hazard Mater 168:970–977

    Article  CAS  Google Scholar 

  9. Pang C, Liu YH, Cao XH, Hua R, Wang CX, Li CQ (2010) Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J Radioanal Nucl Chem 286:185–193

    Article  CAS  Google Scholar 

  10. Hu T, Tan LQ (2012) Modifying attapulgite clay by ammonium citrate tribasic for the removal of radionuclide Th(IV) from aqueous solution. J Radioanal Nucl Chem 292:819–827

    Article  CAS  Google Scholar 

  11. Wang Q, Hu X, Du Y, Kennedy JF (2010) Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr Polym 82:842–847

    Article  CAS  Google Scholar 

  12. Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49:534–540

    Article  CAS  Google Scholar 

  13. Ho YS, McKay G (1999) The sorption of lead (II) ions on peat. Water Res 33:578–584

    Article  CAS  Google Scholar 

  14. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  15. Baskaralingam P, Pulikesi M, Elango D, Ramamurthi V, Sivanesan S (2006) Adsorption of acid dye onto organobentonite. J Hazard Mater 128:138–144

    Article  CAS  Google Scholar 

  16. Zhang H, Niu Z, Liu Z, Wen Z, Li W, Wang X, Wu W (2015) Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin. J Radioanal Nucl Chem 303:87–97

    Article  CAS  Google Scholar 

  17. Ho YS, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38:1047–1061

    Article  CAS  Google Scholar 

  18. Cheung CW, Porter JF, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612

    Article  CAS  Google Scholar 

  19. Moller T, Harjula R, Pillinger M, Dyer A, Newton J, Tusa E, Araya A (2001) Uptake of 85Sr, 134Cs and 57Co by antimony silicates doped with Ti4+, Nb5+, Mo6+ and W6+. J Mater Chem 11:1526–1532

    Article  CAS  Google Scholar 

  20. Sivakami MS, Gomathi T, Venkatesan J, Jeong HS, Kim SK, Sudha PN (2013) Preparation and characterization of nano chitosan for treatment wastewaters. Int J Biol Macromol 57:204–212

    Article  CAS  Google Scholar 

  21. Bai CY, Zhang MC, Li B, Tian Y, Zhang S, Zhao XS, Li SJ (2015) Three novel triazine-based materials with different O/S/N set of donor atoms: one-step preparation and comparison of their capability in selective separation of uranium. J Hazard Mater 300:368–377

    Article  CAS  Google Scholar 

  22. Heshmati H, Gilani HG, Torab-Mostaedi M, Haidary A (2014) Adsorptive removal of thorium (IV) from aqueous solutions using synthesized polyamidoxime chelating resin: equilibrium, kinetic, and thermodynamic studies. J Dispers Sci Technol 35:501–509

    Article  CAS  Google Scholar 

  23. Wu LP, Lin XY, Zhou XB, Luo XG (2016) Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Appl Surf Sci 384:466–479

    Article  CAS  Google Scholar 

  24. Zhang YH, Lin XY, Hu SH, Zhang X, Luo XG (2016) Core-shell zeolite@Alg-Ca particles for removal of strontium from aqueous solutions. RSC Adv 6:73959–73973

    Article  CAS  Google Scholar 

  25. Chen LF, Liang HW, Lu Y, Cui CH, Yu SH (2011) Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27:8998–9004

    Article  CAS  Google Scholar 

  26. Aly Z, Luca V (2013) Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. J Radioanal Nucl Chem 295:889–900

    Article  CAS  Google Scholar 

  27. Aly Z, Scales N, Davis J, Lumpkin G (2017) Mesoporous polymer-coated PAN beads for environmental applications: fabrication, characterisation and uranium adsorption studies. J Radioanal Nucl Chem 311:43–57

    Article  CAS  Google Scholar 

  28. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of Uranium (VI) Adsorption by Polypyrrole. J Hazard Mater 332:132–139

    Article  CAS  Google Scholar 

  29. Zhang ZB, Liu YH, Cao XH, Liang P (2013) Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution. J Radioanal Nucl Chem 295:1775–1782

    Article  CAS  Google Scholar 

  30. Zhang ZB, Cao XH, Liang P, Liu YH (2013) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295:1201–1208

    Article  CAS  Google Scholar 

  31. Mahmoud MA (2016) Adsorption of U (VI) ions from aqueous solution using silicon dioxide nanopowder. J Saudi Chem Soc. doi:10.1016/j.jscs.2016.04.001

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Scientific Projects for Decommissioning of Nuclear Facilities and Radioactive Waste Management (14zg6101), National Natural Science Foundation of China (21406180), Professional Scientific Research Innovation Team Building Fund Projects of Key Research Platform of Southwest University of Science and Technology (No.14tdsc02) and Postgraduate Innovation Fund Project by Southwest University of Science and Technology (17ycx004). The authors gratefully thank the technology support of Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Lin, X., Zhang, Y. et al. Preparation and application of alginate-Ca/attapulgite clay core/shell particle for the removal of uranium from aqueous solution. J Radioanal Nucl Chem 314, 307–319 (2017). https://doi.org/10.1007/s10967-017-5427-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5427-3

Keywords

Navigation