Skip to main content
Log in

Isotopic evidence of allogenic groundwater recharge in the Northern Ordos Basin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Large amount of groundwater recharge runs in opposite direction to the scarce surface water resources in the Northern Ordos Basin, and there are two controversial viewpoints. Hydrogen and oxygen stable isotopes are employed to identify the groundwater origin. Results show that surface water and soil water are mainly recharged by groundwater instead of local precipitation. The groundwater is not recharged by local rainfall, but is inferred to have originated from the Tibetan Plateau, based on isotopic (D, 18O, 3He/4He), hydraulics, geophysical, and geological evidence. It is consistent with the viewpoint of external groundwater recharging in North China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hou G, Liang Y, Su X et al (2008) Groundwater systems and resources in the Ordos Basin, China. Acta Geol Sin Engl 82(5):1061–1069

    Google Scholar 

  2. Chen J, Liu X, Wang C et al (2012) Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Earth Sci 66(2):505–517

    Article  CAS  Google Scholar 

  3. Yang Y, Shen Z, Weng D et al (2009) Oxygen and hydrogen isotopes of waters in the Ordos Basin, China: implications for recharge of groundwater in the north of Cretaceous Groundwater Basin. Acta Geol Sin Engl 83(1):103–113

    Article  CAS  Google Scholar 

  4. Yin L, Hou G, Tao Z et al (2010) Origin and recharge estimates of groundwater in the Ordos Plateau, People’s Republic of China. Environ Earth Sci 60(8):1731–1738

    Article  CAS  Google Scholar 

  5. Yin L, Hou G, Su X et al (2011) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429–443

    Article  CAS  Google Scholar 

  6. Yin L, Hu G, Huang J et al (2011) Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods. Hydrogeol J 19(8):1563–1575

    Article  Google Scholar 

  7. Ge J, Chen J, Wang T et al (2016) Isotopic and hydrochemical evidence of groundwater recharge in the Hopq Desert, NW China. J Radioanal Nucl Chem 310(2):761–775

    Article  CAS  Google Scholar 

  8. Chen JS, Li L, Wang JY et al (2004) Groundwater maintains dune landscape. Nature 432(7016):459–460

    Article  CAS  Google Scholar 

  9. Chen JS, Wang CY (2009) Rising springs along the Silk Road. Geology 37(3):243–246

    Article  Google Scholar 

  10. Chen J, Wang CY, Tan H et al (2012) New lakes in the Taklamakan Desert. Geophys Res Lett 39(22):22402

    Article  Google Scholar 

  11. Ma J, Ding Z, Edmunds WM et al (2009) Limits to recharge of groundwater from Tibetan Plateau to the Gobi Desert, implications for water management in the mountain front. J Hydrol 364(S1–2):128–141

    Article  Google Scholar 

  12. Zhan L, Chen J, Xu Y et al (2017) Allogenic water recharge of groundwater in the Erenhot Wasteland of northern China. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5175-4

    Google Scholar 

  13. Wang T, Chen J, Xu Y et al (2017) Isotopes and hydrochemistry of Daihai Lake recharging sources, Northern China. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5241-y

    Google Scholar 

  14. Yang Q, Xiao H, Zhao L et al (2011) Hydrological and isotopic characterization of river water, groundwater, and groundwater recharge in the Heihe River Basin, Northwestern China. Hydrol Process 25(8):1271–1283

    Article  CAS  Google Scholar 

  15. Sprenger M, Herbstritt B, Weiler M (2015) Established methods and new opportunities for pore water stable isotope analysis. Hydrol Process 29(25):5174–5192

    Article  CAS  Google Scholar 

  16. Huang T, Pang Z, Edmunds WM (2013) Soil profile evolution following land-use change: implications for groundwater quantity and quality. Hydrol Process 27(8):1238–1252

    Article  Google Scholar 

  17. Zhang J, Zhao ZH, Ma HY et al (2013) Comparison of groundwater flow systems under the control of different aquifer structures. Adv Mater Res 610:2688–2692

    Google Scholar 

  18. Xie Y, Deng G, Liu J et al (2012) The effects of sedimentary facies and palaeogeography on the formation and distribution of the deep groundwater of the Cretaceous strata in the Ordos Basin. Sediment Geol Tethyan Geol 32(3):64–74

    CAS  Google Scholar 

  19. Zhao ZH, Wang D, Tao ZP et al (2008) Multi-layer circulation model of groundwater flow systems on the Ordos Plateau, China: evidence from water head measurements at different depths of a deep borehole by the Packer system. Geol Bull China 27(8):1131–1137

    CAS  Google Scholar 

  20. Pan AF, Hao Y, Ma RY (2006) Control action of basement fractures on environment geochemistry landscape and soil erosion in Ordos Basin. Res Soil Water Conserv 13(2):21–23

    Google Scholar 

  21. Ma RY, Zhu HP, Zhang DF et al (2009) Basement faults and their recent activity in Ordos Basin. Chin J Earth Sci Environ 31(4):400–408

    Google Scholar 

  22. Yang YC, Hou GC, Ma SJ (2004) The age and origin of groundwater in the Ordos Basin. Northwest Geol 37(1):97–100

    CAS  Google Scholar 

  23. Yang YC, Hou GC, Wen DG et al (2005) Hydrogen–oxygen isotope composition of precipitation and seasonal effects on δ18O of precipitation in Ordos Basin. Acta Geosci Sin 26(Sup):289–292

    Google Scholar 

  24. Dong WH, Su XS, Hou GC et al (2008) Application of inverse geochemical modeling in 14C age correction of deep groundwater: a case in the Ordos Cretaceous Artesian Basin. J China Hydrol 28(5):43–47

    Google Scholar 

  25. Zheng Y, Wang Z, Fang B et al (2015) Variation of groundwater level in Ordos, Inner Mongolia, China from 2005 to 2014. J Desert Res 35(4):1036–1040

    Google Scholar 

  26. Shurbaji ARM, Phillips FM, Campbella AR (1995) Application of a numerical model for simulating water flow, isotope transport, and heat transfer in the unsaturated zone. J Hydrol 171(1–2):143–163

    Article  CAS  Google Scholar 

  27. IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP database. http://www.iaea.org/water

  28. Jin K, Rao W, Sun J et al (2015) Isotope characteristics and source of precipitation in the Ordos Desert area. Yellow River 37(3):31–35

    CAS  Google Scholar 

  29. Liu BL, Phillips F, Hoines S et al (1995) Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona. J Hydrol 168(1–4):91–110

    Article  CAS  Google Scholar 

  30. Zhang BZ, Zhang PX (1990) Distribution of hydrogen and oxygen isotopes in salt lakes of the Qinghai–Tibetan Plateau, China. Chin J Geochem 4(4):336–346

    Google Scholar 

  31. Niu XS, Chen WX, Liu XF (2013) Geochemial characteristics on salt springs and potash perspective in Dogai coring area of Qiangtang Basin. Geoscience 27(3):621–628

    CAS  Google Scholar 

  32. Zhou S, Kang S, Chen F et al (2013) Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J Hydrol 491(11):89–99

    Article  Google Scholar 

  33. Gou XH, Yang T, Gao LL et al (2013) A 457-year reconstruction of precipitation in the southeastern Qinghai–Tibet Plateau, China using tree-ring records. Chin Sci Bull 58(10):1107–1114

    Article  Google Scholar 

  34. Chen JS, Wang QQ (2012) A discussion of groundwater recharge sources in arid areas of North China. Water Resour Prot 28(3):1–8

    Google Scholar 

  35. Jiang QN, Chen JS (2015) Analysis on water balance of deep cycle groundwater supplying Tianchi Lake of Changbai Mountain. Water Resour Prot 31(5):5–12

    Google Scholar 

  36. Tao M, Xu Y, Shi B et al (2005) Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China. Sci China D 48(7):1074–1088

    Article  Google Scholar 

  37. Xu CF (1996) The China Continental Crust and upper mantle electrical structure and the regulation of earthquake distribution. Acta Seismol Sin 18(2):254–261

    Google Scholar 

  38. Li L (1997) The preliminary achievements of Magnetotelluric Sounding in the study of the crust and upper mantle. Geophys Geochem Explor 21(6):460–467

    Google Scholar 

  39. Bai D, Unsworth MJ, Meju MA et al (2010) Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat Geosci 3(5):358–362

    Article  CAS  Google Scholar 

  40. Shaw RW (1991) Supercritical water—a medium for chemistry. Chem Eng News 69:26–39

    CAS  Google Scholar 

  41. Frantz JD, Marshall WL (1984) Electrical conductance and ionization constants of salts, acids, and bases in supercritical aqueous fluids; I. Hydrochloric acid from 100 degrees to 700 degrees C and at pressures to 4000 bars. Am J Sci 284(6):651–667

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the National Natural Science Foundation of China (51578212), and the Postgraduate Research and Innovation Projects in Jiangsu Province (KYZZ_0141). We gratefully acknowledge the funding from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, J., Ge, J. et al. Isotopic evidence of allogenic groundwater recharge in the Northern Ordos Basin. J Radioanal Nucl Chem 314, 1595–1606 (2017). https://doi.org/10.1007/s10967-017-5523-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5523-4

Keywords

Navigation