Skip to main content
Log in

Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2018

This article has been updated

Abstract

The study shows geochemical characterization of placer deposit in parts of coastal Odisha, India using Instrumental Neutron Activation Analysis (INAA). Twenty seven elements were estimated in ten heavy mineral beach sand samples. The characterisation was mostly based on the trace element, radioactive element and Rare Earth Element (REE) content of the bulk sand samples. The results indicate elevated concentration of thorium and the REE’s. The concentration of Scandium has been reported for the first time along this area. Positive correlation between thorium and REE was observed in beach placer samples collected from study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified after Ramakrishnan et al. [26] and Gupta [36]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 13 November 2018

    The original article was published without an acknowledgement section. The complete acknowledgement section is given below.

References

  1. Soto-Jiménez M, Páez-Osuna F, Morales-Hernández F (2001) Selected trace metals oysters (Crassostrea iridescens) and sediments from the discharge zone of the submarine sewage outfall in Mazatlán by (southeast Gulf of California): chemical fractions and bioaccumulation factors. Environ Pollut 114:357–370

    Article  PubMed  Google Scholar 

  2. Khan R, Yokozuka Y, Terai S, Shirai N, Ebihara M (2015) Accurate determination of Zn in geological and cosmochemical rock samples by isotope dilution inductively coupled plasma mass spectrometry. J Anal At Spectrom 30:506–514

    Article  CAS  Google Scholar 

  3. Khan R, Shirai N, Ebihara M (2015) Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances. Earth Planet Sci Lett 422:18–27

    Article  CAS  Google Scholar 

  4. Hang C, Hu B, Jiang Z, Zhang N (2007) Simultaneous on-line preconcentration and determination of trace metals in environmental samples using a modified nanometer-sized alumina packed micro-column by flow injection combined with ICP-OES. Talanta 71(3):1239–1245

    Article  CAS  PubMed  Google Scholar 

  5. Tamim U, Khan R, Jolly YN, Fatema K, Das S, Naher K, Islam MA, Islam SMA, Hossain SM (2016) Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere 155:509–518

    Article  CAS  PubMed  Google Scholar 

  6. Frontasyeva MV (2011) Neutron activation analysis in the life sciences. Phys Part Nucl 42:332–378. https://doi.org/10.1134/S1063779611020043

    Article  CAS  Google Scholar 

  7. Badawy WM, Ghanim EH, Duliu OG, El Samman H, Frontasyeva MV (2017) Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. J Afr Earth Sci 131:53–61. https://doi.org/10.1016/j.jafrearsci.2017.03.029

    Article  Google Scholar 

  8. Stosch HG (2016) Neutron activation analysis of the rare earth elements (REE): with emphasis on geological materials. Phys Sci Rev 1(8):24. https://doi.org/10.1515/psr-2016-0062

    Article  Google Scholar 

  9. European Commission (2010) Critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials, 85 pp

  10. European Commission (2014) Report on critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials, 41 pp

  11. Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414. https://doi.org/10.1021/es203518d

    Article  CAS  PubMed  Google Scholar 

  12. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Vol 3, The crust. Elsevier, Pergamon, pp 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4

    Chapter  Google Scholar 

  13. Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38(2):153–165. https://doi.org/10.1016/j.radmeas.2003.08.003

    Article  CAS  Google Scholar 

  14. Palaparthi J, Chakrabarti R, Banerjee S, Guin R, Ghosal S, Agrahari S, Sengupta D (2017) Economically viable rare earth element deposits along beach placers of Andhra Pradesh, eastern coast of India. Arab J Geosci 10:201

    Article  CAS  Google Scholar 

  15. Rao NS, Misra S (2009) Sources of monazite sand in southern Orissa beach placer, eastern India. J Geol Soc India 74(9):357–362

    CAS  Google Scholar 

  16. Ghosal S, Agrahari S, Guin R, Sengupta D (2017) Implications of modelled radioactivity measurements along coastal Odisha, Eastern India for heavy mineral resources. Estuar Coast Shelf Sci 184:83–89

    Article  CAS  Google Scholar 

  17. Bangaku Naidu K, Reddy KSN, Sekhar Ch Ravi, Ganapati Rao P, Murali Krishna KN (2016) REE geochemistry of monazites from coastal sands between Bhimunipatnam and Konada, Andhra Pradesh, East coast of India. Curr Sci 110(8):25

    Google Scholar 

  18. Förster H (1998) The chemical composition of REE–Y–Th–U-rich accessory minerals in peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. Part II: xenotime. Am Mineral 83:1302–1315

    Article  Google Scholar 

  19. Behera P (2003) Heavy mineral in beach sands of gopalpur and paradeep along Odisha coast line, east coast of India. Indian J Mar Sci 32(2):172–174

    Google Scholar 

  20. Ravisankar R, Manikandan E, Dheenathayalu M, Rao B, Seshadreesan NP, Nair KGM (2006) Determination and distribution of rare earth elements in beach rock samples using Instrumental Neutron Activation Analysis (INAA). Nucl Instrum Methods Phys Res B 251:496–500

    Article  CAS  Google Scholar 

  21. Ravisankar R, Chandrasekaran A, Senthilkumar G, Govardhanan B, Anand DP (2013) Instrumental Neutron Activation Analysis (INAA) of beach rock samples of Andaman Island, India. Sci Acta Xaver 4(2):1–9

    Google Scholar 

  22. Mishra DG, Acharya R, Swain KK, Joshi RM, Joshi VM, Verma PC, Hegde AG, Reddy AVR (2012) Determination of thorium concentrations in soil and sand samples using instrumental neutron activation analysis. J Radioanal Nucl Chem 294:333–336

    Article  CAS  Google Scholar 

  23. Vasconcelos DC, Oliveira1 AH, Silva MRS, Penna R, Santos TO, Pereira C, Rocha Z, Menezes MÂBC (2009) Determination of uranium and thorium activity concentrations using activation analysis in beach sands from extreme South Bahia, Brazil. In: International nuclear Atlantic conference—INAC 2009 Rio de Janeiro, RJ, Brazil, Associação Brasileira De Energia Nuclear—ABEN (ISBN: 978-85-99141-03-8)

  24. Reguigui N, Kucera J, Ben Kraiem H (2002) Determination of trace elements in Tunisian soil, desert and beach sand using instrumental neutron activation analysis. In: Proceedings of international symposium on environmental pollution control and waste management, pp 70–82

  25. Sengupta D, Van Gosen BS (2016) Placer-type rare earth element deposits. Soc Econ Geol Rev Econ Geol 18:81–100

    Google Scholar 

  26. Ramakrishnan M, Nanda JK, Augustine PF (1998) Geological evolution of the proterozoic eastern ghats mobile belt. Geological Survey of India Special Publication 44

  27. International Atomic Energy Agency (1995) Reference sheet SL-1 trace elements in lake sediments

  28. Randa Z, Frána J, Mizera J, Kucera J, Novák JK, Ulrych J, Belov AG, Maslov OD (2007) Instrumental neutron and photon activation analysis in the geochemical study of phonolitic and trachytic rocks. Geostand Geoanal Res 31:275–283

    Article  CAS  Google Scholar 

  29. Garcia D, Fonteilles M, Moutte J (1994) Sedimentary fractionations between Al, Ti, and Zr, and the genesis of strongly peraluminous granites. J Geol 102:411–422

    Article  CAS  Google Scholar 

  30. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  CAS  Google Scholar 

  31. Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    Article  CAS  PubMed  Google Scholar 

  32. El-Kammar AA, Ragab AA, Moustafa MI (2011) Geochemistry of economic heavy minerals from Rosetta black sand of Egypt. JAKU Earth Sci 22(2):69–97

    Google Scholar 

  33. Paul DK, Ray Barman T, McNaughton NJ, Fletcher IR, Potts PJ, Ramakrishnan M, Augustine PF (1990) Archean–proterozoic evolution of indian charnockites: isotopic and geochemical evidence from granulites of the eastern ghats belt. J Geol 98(2):253–263

    Article  Google Scholar 

  34. Kellam JA, Bonn GN, Laney MK (1992) Distribution of heavy mineral sands adjacent to the Altamaha sound: an exploration model. Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey Bulletin, Atlanta, p 110

    Google Scholar 

  35. Van Gosen BS, Verplanck PL, Long KR, Gambogi Joseph Seal RR II (2014) The rare-earth elements—vital to modern technologies and lifestyles. U.S. Geological Survey Fact Sheet 2014–3078, p 4. https://dx.doi.org/10.3133/fs20143078

  36. Gupta S (2012) Strain localization, granulite formation and geodynamic setting of ‘hot orogens: a case study from the Eastern Ghats Province, India. Geol J 47:334–351

    Article  CAS  Google Scholar 

  37. Taylor SR, McLennan SM (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc 301(1461):381–399

    Article  CAS  Google Scholar 

  38. Eman S (2016) Determination of the elements concentration in Egyptian black sand using the neutron activation analysis technique. Curr Sci Int 5:307–313

    Google Scholar 

  39. Tsai CS, Yeh SJ (1997) Determination of rare earth elements in Taiwan monazite by chemical neutron activation analysis. J Radioanal Nucl Chem 216(2):241–245

    Article  CAS  Google Scholar 

  40. Ibrahim N (1994) Isotope identification of Langkawi black sand using neutron activation analysis. J Radioanal Nucl Chem 186(6):489–494

    Article  CAS  Google Scholar 

  41. Abdallah Ali M, Fayez-Hassan NA Mansour, Mubarak Fawzia, Ahmed Talaat Salah, Hassanin WF (2018) Elemental analysis and radionuclides monitoring of beach black sand at north of Nile delta, Egypt. Pure Appl Geophys 175:2269–2278. https://doi.org/10.1007/s00024-017-1757-x

    Article  Google Scholar 

Download references

Acknowledgements

The work has been funded by the Science and Engineering Research Board (SERB), DST, Govt. of India, under the Project Code: YSS/2015/000979. We acknowledge their financial assistance. We are also thankful to the technical personnel associated with this study, especially to the persons involved in the TRIGA Mark II research reactor operation at the Center for Research Reactor, AERE, Bangladesh Atomic Energy Commission, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Sengupta.

Appendices

Appendix A: Elemental abundances in heavy mineral placers collected from the beach placers in Odisha, the values are expressed in µg/g

 

L-5

±

L-7

±

L-9

±

L-10

±

L-11

±

L-13

±

L-14

±

L-16

±

L-18

±

L-19

±

Na

416

4

321

3

336

3

312

3

318

3

325

4

172

2

233

3

538

7

476

6

Al

4340

30

4180

30

4880

30

4880

30

5120

30

4180

30

4040

30

5450

40

5030

40

4710

40

K

2330

50

1720

30

1770

40

1970

40

1680

40

1340

30

718

21

1030

30

2500

60

2080

50

Sc

5.68

0.07

7.38

0.08

21

0.2

17.7

0.2

22.5

0.2

12.9

0.2

34

0.4

20.2

0.3

7.12

0.09

11.6

0.2

Ti

633

34

1330

60

6260

270

3990

180

6420

280

1910

90

11,700

500

5480

240

1480

70

2210

100

V

73

2

110

3

368

7

255

6

378

8

142

4

643

12

351

8

123

4

159

4

Cr

46

1

62

1

151

2

135

2

151

3

76

2

222

4

152

3

74

1

84

3

Mn

334

3

464

4

1451

9

1214

8

1544

10

851

6

2249

13

1418

9

420

4

800

6

Fe

2020

40

2720

40

9240

130

7160

100

9830

140

4250

70

16,600

300

8200

140

2880

50

4160

90

Co

6.17

0.19

7.37

0.18

24.7

0.4

19.4

0.3

25

0.4

11.1

0.3

38.7

0.7

20.2

0.4

9.4

0.2

11.9

0.4

Zn

47

3

53

3

209

8

152

6

177

7

84

4

299

12

169

7

89

4

80

6

Ga

9.28

0.43

11.1

0.5

17.2

0.6

15.4

0.6

16.5

0.7

12.2

0.6

18

0.7

20.7

0.8

11.7

0.6

14.1

0.7

As

3.1

0.14

1.84

0.1

6.71

0.2

7.32

0.23

8.36

0.25

2.21

0.12

4.29

0.17

3.32

0.16

4.64

0.19

7.13

0.25

Ba

688

30

523

24

483

22

595

27

457

23

397

21

281

16

343

20

10,893

366

608

30

La

35.7

0.8

110

2

502

7

501

7

383

6

123

2

1958

33

972

16

169

3

93

2

Ce

73

1

240

4

1034

15

1088

16

859

13

260

5

4443

75

2002

34

375

6

189

4

Nd

23.2

1

93

3

439

10

513

12

331

8

79

3

1923

46

1013

25

124

4

91

3

Sm

4.86

0.07

15.1

0.2

68.7

0.7

69.3

0.7

51

0.5

16.7

0.2

256

3

125

2

24.1

0.3

13.3

0.2

Eu

1.12

0.06

1.02

0.05

1.8

0.07

1.87

0.06

1.78

0.07

1.15

0.06

3.64

0.11

2.1

0.08

1.68

0.05

1.01

0.08

Tb

0.411

0.025

0.808

0.031

3.36

0.08

3.21

0.07

2.65

0.07

1.16

0.04

10.1

0.2

4.66

0.12

1.26

0.04

0.963

0.061

Dy

2.44

0.06

4.25

0.09

14.8

0.2

15.1

0.2

12.6

0.2

6.9

0.1

37.7

0.6

20.7

0.4

5.49

0.13

5.82

0.14

Yb

1.48

0.06

2.89

0.08

7.51

0.16

6.57

0.13

6.88

0.16

4.8

0.13

14.7

0.3

7.31

0.18

2.24

0.06

4.72

0.2

Lu

0.189

0.008

0.207

0.008

0.669

0.02

0.581

0.018

0.538

0.017

0.388

0.014

1.03

0.03

0.669

0.022

0.233

0.01

0.394

0.015

Hf

8.7

0.2

13.5

0.3

55.3

0.9

55.3

0.9

36.9

0.6

21.5

0.4

138

2

60.1

1.1

24.9

0.5

18

0.5

Ta

1.36

0.08

2.85

0.12

11.9

0.4

8.04

0.26

11.2

0.4

3.76

0.16

23.9

0.8

10

0.4

2.82

0.11

4.64

0.24

Th

21.7

0.3

72.1

0.8

327

3

340

3

279

3

80.3

1.1

1430

19

634

8

103

1

67.8

1

U

1.24

0.06

3.2

0.1

13.1

0.3

12.3

0.3

8.8

0.2

2.89

0.11

43.3

0.9

21.1

0.5

6.61

0.22

3.35

0.16

Appendix B: Elements with their resulting radionuclide (after interaction with thermal neutron), half-life, counting mood (Short1-S1, Short2-S2, Long1-L1, Long2-L2 and Long3-L3) and the respective gamma energy (in keV)

Elements

Radionuclide

Half-life

Counting mood

Gamma energy (keV)

Na

24Na

15.02 h

S2

1368.8, 2754

Al

28Al

2.25 month

S1

1778.8

K

42K

12.36 h

S2

1524.6

Sc

46Sc

83.83 days

L3

889.2, 1120.5

Ti

51Ti

5.76 month

S1

320.1

V

52V

3.76 month

S1

1434.2

Cr

51Cr

27.7 days

L3

320.1

Mn

56Mn

2.58 month

S2

846.6, 1810.7, 2113.2

Fe

59Fe

44.50 days

L3

1099.2, 1291.6

Co

60Co

5.27 years

L3

1173.2, 1332.5

Zn

65Zn

244.1 days

L3

1115.5

Ga

72Ga

14.1 h

L1

629.9, 834

As

76As

26.30 h

L1

559.1

Ba

131Ba

11.8 days

L2

123.8, 216, 373.2, 496.3

La

140La

1.68 days

L1

328.8, 487, 815.8, 1596.2

Ce

141Ce

32.51 days

L3

145.5

Nd

147Nd

10.99 days

L2

91.1, 531

Sm

153Sm

1.94 days

L1

103.2

Eu

152Eu

13.33 years

L3

121.8, 1408

Tb

160Tb

72.30 days

L3

298.6, 879.4, 1177.9

Dy

165Dy

2.33 h

S2

94.7

Yb

169Yb

32.02 days

L3

177

 

175Yb

4.19 days

L1

282.5, 396.3

Lu

177Lu

6.71 days

L2

208.4

Hf

181Hf

42.39 days

L3

132.9, 482

Ta

182Ta

115 days

L3

1189, 1221.4

Th

233Pa

27 days

L3

311.9

U

239Np

2.35 days

L1

106.1, 228.2, 277

Appendix C: Elemental abundances in replicate measurements (n = 3) of IAEA-SL-1 along with their literature values [27]. Individual uncertainties are due to their counting statistics and the neutron flux corrections obtained from monitor foils

 

SL-1(1)

±

SL-1(2)

±

SL-1(3)

±

Average

SD

RSD (%)

Certificate

Min.

Max.

Mass (g)

0.04,003

 

0.0614

 

0.07083

       

Na (%)

0.173

0.002

0.171

0.002

0.169

0.002

0.171

0.002

1.2

0.172

0.16

0.184

Al (%)

10

0.06

9.9

0.06

9.96

0.06

9.95

0.05

0.5

8.9

  

K (%)

1.41

0.04

1.44

0.04

1.37

0.03

1.41

0.04

2.7

1.5

  

Sc (µg/g)

16

0.2

14.9

0.2

15.6

0.3

15.5

0.6

3.6

17.3

16.2

18.4

Ti (%)

0.417

0.026

0.514

0.029

0.515

0.028

0.482

0.057

11.7

0.517

0.48

0.554

V (µg/g)

152

5

165

5

164

5

160

7

4.5

170

155

185

Cr (µg/g)

104

2

98

2

101

2

101

3

2.9

104

95

113

Mn (µg/g)

3431

18

3498

20

3433

18

3454

38

1.1

3460

3300

3620

Fe (%)

6.5

0.09

6.2

0.1

6.38

0.12

6.36

0.15

2.4

6.74

6.57

6.91

Co (µg/g)

19.2

0.3

16.9

0.3

17.9

0.3

18

1.2

6.5

19.8

18.3

21.3

Zn (µg/g)

215

8

197

7

206

8

206

9

4.3

223

213

233

Ga (µg/g)

21

1

24

1

23

2

23

1

5.1

24

  

As (µg/g)

28.5

0.7

28

0.7

32.1

0.9

29.5

2.2

7.5

27.5

24.6

30.4

Ba (µg/g)

593

27

610

27

571

28

591

20

3.3

639

586

692

La (µg/g)

49

1

47

1

49

1

48

1

2.6

52.6

49.5

55.7

Ce (µg/g)

106

2

99

2

105

2

103

4

3.6

117

100

134

Nd (µg/g)

42

2

48

2

47

2

46

3

6.6

43.8

41

46.6

Sm (µg/g)

9

0.1

8.2

0.1

9.1

0.2

8.7

0.5

5.8

9.25

8.74

9.76

Eu (µg/g)

1.79

0.02

1.59

0.02

1.71

0.03

1.7

0.1

5.8

1.6

  

Tb (µg/g)

1.05

0.03

0.93

0.03

1.03

0.03

1

0.06

6.3

1.4

  

Dy (µg/g)

6.8

0.1

6.6

0.2

7.9

0.2

7.1

0.7

9.7

7.46

5.34

9.58

Yb (µg/g)

3

0.1

2.7

0.1

3.1

0.1

3

0.2

7.7

3.42

2.78

4.06

Lu (µg/g)

0.47

0.02

0.64

0.03

0.79

0.04

0.64

0.16

25.1

0.54

  

Hf (µg/g)

4.03

0.09

3.86

0.09

4.06

0.1

3.98

0.1

2.6

4.16

3.58

4.74

Ta (µg/g)

1.07

0.05

0.84

0.04

1.13

0.05

1.02

0.15

14.9

1.6

  

Th (µg/g)

12.9

0.2

11.7

0.2

12.8

0.2

12.4

0.7

5.5

14

13

15

U (µg/g)

3.4

0.1

3.6

0.1

4.3

0.3

3.8

0.4

11.5

4.02

3.7

4.34

Both NIST-1633b (coal-fly-ash) and IAEA-Soil-7 were used as standard. For the quantification of Sc, V, Cr, Co, Ga, As, Ba, La, Nd, Sm, Eu, Tb, Dy, Hf, Yb, Ta, Th and U, NIST-1633b was used as standard while the rest of the elements were quantified by using IAEA-Soil-7 as the standard. Data reliability was checked by the repeated analysis (n = 3) of IAEA-SL-1 (lake sediment) with different sample mass (40.03 to 70.83 mg). Accuracy has been checked by comparing our analytical values (mean value) to those of certificate values. All the elemental abundances of our study are consistent with those of certificate value within 10%, except those for Al, Ce, Tb, Yb, Lu, Ta and Th. In the IAEA-SL-1 certificate (provided by IAEA), Tb, Yb, Lu and Ta are indicated as ‘information value’ rather than the ‘recommended value’. But considering the analytical uncertainty (standard deviation, 1σ) our elemental data for IAEA-SL-1 are consistent with those of certificate value. In “Appendix C”, reproducibility (precision) is presented by the relative standard deviations (RSDs). Analytical reproducibility for Na, Al, K, Sc, V, Cr, Mn, Fe, Zn, Ba, La, Ce and Hf are within 5.0% and for Co, Ga, As, Nd, Sm, Eu, Tb, Dy, Yb and Th are less than 10.0% but more than 5.0% whereas, the reproducibility for Ti, Lu, Ta and U are more than 10.0%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Ghosal, S., Sengupta, D. et al. Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis. J Radioanal Nucl Chem 319, 471–484 (2019). https://doi.org/10.1007/s10967-018-6250-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6250-1

Keywords

Navigation